Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards
Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1137-1173.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors have recently introduced the class of topological billiards. Topological billiards are glued from elementary planar billiard sheets (bounded by arcs of confocal quadrics) along intervals of their boundaries. It turns out that the integrability of the elementary billiards implies that of the topological billiards. We show that all classical linearly and quadratically integrable geodesic flows on tori and spheres are Liouville equivalent to appropriate topological billiards. Moreover, the linear and quadratic integrals of the geodesic flows reduce to a single canonical linear integral and a single canonical quadratic integral on the billiard. These results are obtained within the framework of the Fomenko–Zieschang theory of the classification of integrable systems.
Keywords: integrable system, topological billiard, geodesic flow
Mots-clés : Liouville equivalence, Fomenko–Zieschang invariant.
@article{IM2_2019_83_6_a1,
     author = {V. V. Vedyushkina (Fokicheva) and A. T. Fomenko},
     title = {Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards},
     journal = {Izvestiya. Mathematics },
     pages = {1137--1173},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/}
}
TY  - JOUR
AU  - V. V. Vedyushkina (Fokicheva)
AU  - A. T. Fomenko
TI  - Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1137
EP  - 1173
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/
LA  - en
ID  - IM2_2019_83_6_a1
ER  - 
%0 Journal Article
%A V. V. Vedyushkina (Fokicheva)
%A A. T. Fomenko
%T Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards
%J Izvestiya. Mathematics 
%D 2019
%P 1137-1173
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/
%G en
%F IM2_2019_83_6_a1
V. V. Vedyushkina (Fokicheva); A. T. Fomenko. Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards. Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1137-1173. http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/

[1] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl

[2] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl

[3] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl

[4] E. Gutkin, “Billiard dynamics: a survey with the emphasis on open problems”, Regul. Chaotic Dyn., 8:1 (2003), 1–13 | DOI | MR | Zbl

[5] A. Plakhov, S. Tabachnikov, D. Treschev, “Billiard transformations of parallel flows: a periscope theorem”, J. Geom. Phys., 115 (2017), 157–166 | DOI | MR | Zbl

[6] A. Glutsyuk, “On quadrilateral orbits in complex algebraic planar billiards”, Mosc. Math. J., 14:2 (2014), 239–289 | DOI | MR | Zbl

[7] A. Glutsyuk, On polynomially integrable Birkhoff billiards on surfaces of constant curvature, arXiv: 1706.04030

[8] A. A. Glutsyuk, “On two-dimensional polynomially integrable billiards on surfaces of constant curvature”, Dokl. Math., 98:1 (2018), 382–385 | DOI | Zbl

[9] M. Bialy, A. E. Mironov, “On fourth-degree polynomial integrals of the Birkhoff billiard”, Proc. Steklov Inst. Math., 295 (2016), 27–32 | DOI | DOI | MR | Zbl

[10] M. Bialy, A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp. | DOI | MR | Zbl

[11] M. Bialy, A. E. Mironov, “Algebraic Birkhoff conjecture for billiards on sphere and hyperbolic plane”, J. Geom. Phys., 115 (2017), 150–156 | DOI | MR | Zbl

[12] S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62 | DOI | DOI | MR | Zbl

[13] “Integrable discrete-time systems and difference operators”, Funct. Anal. Appl., 22:2 (1988), 83–93 | DOI | MR | Zbl

[14] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl

[15] V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse””, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl

[16] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl

[17] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl

[18] V. V. Vedyushkina, A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl

[19] V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5 | DOI | MR | Zbl

[20] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl

[21] E. A. Kudryavtseva, “Liouville integrable generalized billiard flows and Poncelet type theorems”, J. Math. Sci. (N.Y.), 225:4 (2017), 611–638 | DOI | MR | Zbl

[22] V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | DOI | MR | Zbl

[23] V. V. Vedyushkina, “Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas”, Moscow Univ. Math. Bull., 73:4 (2018), 150–155 | DOI | MR | Zbl

[24] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[25] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl

[26] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[27] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl

[28] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo Mosk. un-ta, M., 1980, 231 pp. | MR | Zbl

[29] A. A. Oshemkov, “The topology of surfaces of constant energy and bifurcation diagrams for integrable cases of the dynamics of a rigid body on $\operatorname{SO}(4)$”, Russian Math. Surveys, 42:6 (1987), 241–242 | DOI | MR | Zbl

[30] A. A. Oshemkov, “Opisanie izoenergeticheskikh poverkhnostei integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Trudy seminara po vektornomu i tenzornomu analizu, 23, Izd-vo MGU, M., 1988, 122–132 | MR | Zbl

[31] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | DOI | MR | Zbl

[32] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | DOI | MR | Zbl

[33] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | DOI | MR | Zbl

[34] N. S. Slavina, “Classification of the family of Kovalevskaya–Yehia systems up to Liouville equivalence”, Dokl. Math., 88:2 (2013), 537–540 | DOI | DOI | MR | Zbl

[35] V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $so(4)$ under zero area integral”, Moscow Univ. Math. Bull., 71:3 (2016), 119–123 | DOI | MR | Zbl

[36] S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139 | DOI | DOI | MR | Zbl

[37] S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268 | DOI | DOI | MR | Zbl

[38] A. Yu. Moskvin, “Topology of the Liouville foliation on a 2-sphere in the Dullin–Matveev integrable case”, Sb. Math., 199:3 (2008), 411–448 | DOI | DOI | MR | Zbl

[39] E. O. Kantonistova, “Liouville classification of integrable Hamiltonian systems on surfaces of revolution”, Moscow Univ. Math. Bull., 70:5 (2015), 220–222 | DOI | MR | Zbl

[40] E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399 | DOI | DOI | MR | Zbl

[41] D. S. Timonina, “Liouville classification of integrable geodesic flows on a torus of revolution in a potential field”, Moscow Univ. Math. Bull., 72:3 (2017), 121–128 | DOI | MR | Zbl

[42] A. V. Bolsinov, A. T. Fomenko, “Geodezicheskii potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR | Zbl

[43] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl

[44] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl

[45] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | MR | Zbl | Zbl

[46] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl

[47] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[48] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl

[49] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[50] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[51] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl

[52] E. A. Kudryavtseva, A. T. Fomenko, “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl

[53] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR-Izv., 21:2 (1983), 291–306 | DOI | MR | Zbl

[54] V. S. Matveev, “Kvadratichno integriruemye geodezicheskie potoki na tore i butylke Kleina”, Regul. Chaotic Dyn., 2:1 (1997), 96–102 | MR | Zbl

[55] I. K. Babenko, N. N. Nekhoroshev, “On complex structures on two-dimensional tori admitting metrics with nontrivial quadratic integral”, Math. Notes, 58:5 (1995), 1129–1135 | DOI | MR | Zbl

[56] Nguyen Tien Zung, L. S. Polyakova, E. N. Selivanova, “Topological classification of integrable geodesic flows on orientable two-dimensional Riemannian manifolds with additional integral depending on momenta linearly or quadratically”, Funct. Anal. Appl., 27:3 (1993), 186–196 | DOI | MR | Zbl

[57] E. N. Selivanova, “Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 491–505 | DOI | MR | Zbl

[58] V. V. Kalashnikov, “Topological classification of quadratic-integrable geodesic flows on a two-dimensional torus”, Russian Math. Surveys, 50:1 (1995), 200–201 | DOI | MR | Zbl

[59] V. S. Matveev, Osobennosti otobrazheniya momenta i topologicheskoe stroenie integriruemykh geodezicheskikh potokov, Diss. ... kand. fiz.-matem. nauk, MGU, mekh.-matem. f-t, M., 1996, 75 pp.

[60] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | MR | Zbl

[61] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[62] V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 | DOI | DOI | MR | Zbl

[63] V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | MR | Zbl

[64] V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | DOI | MR | Zbl