Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_6_a1, author = {V. V. Vedyushkina (Fokicheva) and A. T. Fomenko}, title = {Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards}, journal = {Izvestiya. Mathematics }, pages = {1137--1173}, publisher = {mathdoc}, volume = {83}, number = {6}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/} }
TY - JOUR AU - V. V. Vedyushkina (Fokicheva) AU - A. T. Fomenko TI - Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards JO - Izvestiya. Mathematics PY - 2019 SP - 1137 EP - 1173 VL - 83 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/ LA - en ID - IM2_2019_83_6_a1 ER -
%0 Journal Article %A V. V. Vedyushkina (Fokicheva) %A A. T. Fomenko %T Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards %J Izvestiya. Mathematics %D 2019 %P 1137-1173 %V 83 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/ %G en %F IM2_2019_83_6_a1
V. V. Vedyushkina (Fokicheva); A. T. Fomenko. Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards. Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1137-1173. http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/
[1] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[2] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl
[3] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl
[4] E. Gutkin, “Billiard dynamics: a survey with the emphasis on open problems”, Regul. Chaotic Dyn., 8:1 (2003), 1–13 | DOI | MR | Zbl
[5] A. Plakhov, S. Tabachnikov, D. Treschev, “Billiard transformations of parallel flows: a periscope theorem”, J. Geom. Phys., 115 (2017), 157–166 | DOI | MR | Zbl
[6] A. Glutsyuk, “On quadrilateral orbits in complex algebraic planar billiards”, Mosc. Math. J., 14:2 (2014), 239–289 | DOI | MR | Zbl
[7] A. Glutsyuk, On polynomially integrable Birkhoff billiards on surfaces of constant curvature, arXiv: 1706.04030
[8] A. A. Glutsyuk, “On two-dimensional polynomially integrable billiards on surfaces of constant curvature”, Dokl. Math., 98:1 (2018), 382–385 | DOI | Zbl
[9] M. Bialy, A. E. Mironov, “On fourth-degree polynomial integrals of the Birkhoff billiard”, Proc. Steklov Inst. Math., 295 (2016), 27–32 | DOI | DOI | MR | Zbl
[10] M. Bialy, A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp. | DOI | MR | Zbl
[11] M. Bialy, A. E. Mironov, “Algebraic Birkhoff conjecture for billiards on sphere and hyperbolic plane”, J. Geom. Phys., 115 (2017), 150–156 | DOI | MR | Zbl
[12] S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62 | DOI | DOI | MR | Zbl
[13] “Integrable discrete-time systems and difference operators”, Funct. Anal. Appl., 22:2 (1988), 83–93 | DOI | MR | Zbl
[14] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl
[15] V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse””, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl
[16] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl
[17] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl
[18] V. V. Vedyushkina, A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl
[19] V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5 | DOI | MR | Zbl
[20] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl
[21] E. A. Kudryavtseva, “Liouville integrable generalized billiard flows and Poncelet type theorems”, J. Math. Sci. (N.Y.), 225:4 (2017), 611–638 | DOI | MR | Zbl
[22] V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | DOI | MR | Zbl
[23] V. V. Vedyushkina, “Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas”, Moscow Univ. Math. Bull., 73:4 (2018), 150–155 | DOI | MR | Zbl
[24] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[25] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl
[26] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[27] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl
[28] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo Mosk. un-ta, M., 1980, 231 pp. | MR | Zbl
[29] A. A. Oshemkov, “The topology of surfaces of constant energy and bifurcation diagrams for integrable cases of the dynamics of a rigid body on $\operatorname{SO}(4)$”, Russian Math. Surveys, 42:6 (1987), 241–242 | DOI | MR | Zbl
[30] A. A. Oshemkov, “Opisanie izoenergeticheskikh poverkhnostei integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Trudy seminara po vektornomu i tenzornomu analizu, 23, Izd-vo MGU, M., 1988, 122–132 | MR | Zbl
[31] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | DOI | MR | Zbl
[32] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | DOI | MR | Zbl
[33] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | DOI | MR | Zbl
[34] N. S. Slavina, “Classification of the family of Kovalevskaya–Yehia systems up to Liouville equivalence”, Dokl. Math., 88:2 (2013), 537–540 | DOI | DOI | MR | Zbl
[35] V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $so(4)$ under zero area integral”, Moscow Univ. Math. Bull., 71:3 (2016), 119–123 | DOI | MR | Zbl
[36] S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139 | DOI | DOI | MR | Zbl
[37] S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268 | DOI | DOI | MR | Zbl
[38] A. Yu. Moskvin, “Topology of the Liouville foliation on a 2-sphere in the Dullin–Matveev integrable case”, Sb. Math., 199:3 (2008), 411–448 | DOI | DOI | MR | Zbl
[39] E. O. Kantonistova, “Liouville classification of integrable Hamiltonian systems on surfaces of revolution”, Moscow Univ. Math. Bull., 70:5 (2015), 220–222 | DOI | MR | Zbl
[40] E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399 | DOI | DOI | MR | Zbl
[41] D. S. Timonina, “Liouville classification of integrable geodesic flows on a torus of revolution in a potential field”, Moscow Univ. Math. Bull., 72:3 (2017), 121–128 | DOI | MR | Zbl
[42] A. V. Bolsinov, A. T. Fomenko, “Geodezicheskii potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR | Zbl
[43] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl
[44] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl
[45] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | MR | Zbl | Zbl
[46] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl
[47] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl
[48] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl
[49] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl
[50] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl
[51] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl
[52] E. A. Kudryavtseva, A. T. Fomenko, “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl
[53] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR-Izv., 21:2 (1983), 291–306 | DOI | MR | Zbl
[54] V. S. Matveev, “Kvadratichno integriruemye geodezicheskie potoki na tore i butylke Kleina”, Regul. Chaotic Dyn., 2:1 (1997), 96–102 | MR | Zbl
[55] I. K. Babenko, N. N. Nekhoroshev, “On complex structures on two-dimensional tori admitting metrics with nontrivial quadratic integral”, Math. Notes, 58:5 (1995), 1129–1135 | DOI | MR | Zbl
[56] Nguyen Tien Zung, L. S. Polyakova, E. N. Selivanova, “Topological classification of integrable geodesic flows on orientable two-dimensional Riemannian manifolds with additional integral depending on momenta linearly or quadratically”, Funct. Anal. Appl., 27:3 (1993), 186–196 | DOI | MR | Zbl
[57] E. N. Selivanova, “Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 491–505 | DOI | MR | Zbl
[58] V. V. Kalashnikov, “Topological classification of quadratic-integrable geodesic flows on a two-dimensional torus”, Russian Math. Surveys, 50:1 (1995), 200–201 | DOI | MR | Zbl
[59] V. S. Matveev, Osobennosti otobrazheniya momenta i topologicheskoe stroenie integriruemykh geodezicheskikh potokov, Diss. ... kand. fiz.-matem. nauk, MGU, mekh.-matem. f-t, M., 1996, 75 pp.
[60] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | MR | Zbl
[61] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl
[62] V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 | DOI | DOI | MR | Zbl
[63] V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | MR | Zbl
[64] V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | DOI | MR | Zbl