Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards
Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1137-1173

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors have recently introduced the class of topological billiards. Topological billiards are glued from elementary planar billiard sheets (bounded by arcs of confocal quadrics) along intervals of their boundaries. It turns out that the integrability of the elementary billiards implies that of the topological billiards. We show that all classical linearly and quadratically integrable geodesic flows on tori and spheres are Liouville equivalent to appropriate topological billiards. Moreover, the linear and quadratic integrals of the geodesic flows reduce to a single canonical linear integral and a single canonical quadratic integral on the billiard. These results are obtained within the framework of the Fomenko–Zieschang theory of the classification of integrable systems.
Keywords: integrable system, topological billiard, geodesic flow
Mots-clés : Liouville equivalence, Fomenko–Zieschang invariant.
@article{IM2_2019_83_6_a1,
     author = {V. V. Vedyushkina (Fokicheva) and A. T. Fomenko},
     title = {Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards},
     journal = {Izvestiya. Mathematics },
     pages = {1137--1173},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/}
}
TY  - JOUR
AU  - V. V. Vedyushkina (Fokicheva)
AU  - A. T. Fomenko
TI  - Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1137
EP  - 1173
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/
LA  - en
ID  - IM2_2019_83_6_a1
ER  - 
%0 Journal Article
%A V. V. Vedyushkina (Fokicheva)
%A A. T. Fomenko
%T Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards
%J Izvestiya. Mathematics 
%D 2019
%P 1137-1173
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/
%G en
%F IM2_2019_83_6_a1
V. V. Vedyushkina (Fokicheva); A. T. Fomenko. Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards. Izvestiya. Mathematics , Tome 83 (2019) no. 6, pp. 1137-1173. http://geodesic.mathdoc.fr/item/IM2_2019_83_6_a1/