Almost solubility of classes of non-linear integral equations of the first kind on cones
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 990-1007.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using convexity properties of the images of completely continuous non-linear integral operators, we describe the closed convex cones lying either in the recessive cone, or in the tangent cone of the closed image of the operator being studied (depending on the nature of the integrand). These cones are determined by the principal part of the asymptotics of the integrand at infinity, independently of the variation of the subordinate part. We discuss applications to the generalized solubility of non-linear integral equations of the first kind.
Keywords: non-linear integral operator, recessive cone, equation of the first kind, solubility.
Mots-clés : tangent cone
@article{IM2_2019_83_5_a3,
     author = {M. Yu. Kokurin},
     title = {Almost solubility of classes of non-linear integral equations of the first kind on cones},
     journal = {Izvestiya. Mathematics },
     pages = {990--1007},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a3/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Almost solubility of classes of non-linear integral equations of the first kind on cones
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 990
EP  - 1007
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a3/
LA  - en
ID  - IM2_2019_83_5_a3
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Almost solubility of classes of non-linear integral equations of the first kind on cones
%J Izvestiya. Mathematics 
%D 2019
%P 990-1007
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a3/
%G en
%F IM2_2019_83_5_a3
M. Yu. Kokurin. Almost solubility of classes of non-linear integral equations of the first kind on cones. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 990-1007. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a3/

[1] A. N. Tikhonov, A. S. Leonov, A. G. Yagola, Nonlinear ill-posed problems, v. 1, 2, Appl. Math. Math. Comput., 14, Chapman Hall, London, 1998, xxii+387 pp. | MR | MR | Zbl | Zbl

[2] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2008, 460 pp.

[3] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of linear ill-posed problems and its applications, Inverse Ill-posed Probl. Ser., 36, 2nd ed., VSP, Utrecht, 2002, xiii+281 pp. | DOI | MR | MR | Zbl | Zbl

[4] A. B. Bakushinskii, M. Yu. Kokurin, Algoritmicheskii analiz neregulyarnykh operatornykh uravnenii, LENAND, M., 2012, 312 pp.

[5] M. A. Krasnosel'skii, P. P. Zabreiko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | MR | MR | Zbl | Zbl

[6] M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Approximate solution of operator equations, Wolters-Noordhoff Publ., Groningen, 1972, xii+484 pp. | DOI | MR | MR | Zbl | Zbl

[7] E. G. Golstein, Dualitätstheorie in der nichtlinearen Optimierung und ihre Anwendung, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 39, Akademie-Verlag, Berlin, 1975, xiv+254 pp. | MR | MR | Zbl | Zbl

[8] M. Yu. Kokurin, “Convexity properties of images under nonlinear integral operators”, Sb. Math., 205:12 (2014), 1775–1786 | DOI | DOI | MR | Zbl

[9] M. Yu. Kokurin, “On the convexity of images of nonlinear integral operators”, Math. Notes, 100:4 (2016), 561–567 | DOI | DOI | MR | Zbl

[10] J.-P. Aubin, I. Ekeland, Applied nonlinear analysis, Pure Appl. Math. (N. Y.), Wiley-Intersci. Publ. John Wiley Sons, Inc., New York, 1984, xi+518 pp. | MR | MR | Zbl

[11] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 215 pp. | MR | Zbl

[12] A. A. Lyapunov, “O vpolne additivnykh vektor-funktsiyakh”, Izv. AN SSSR. Ser. matem., 4:6 (1940), 465–478 | MR | Zbl

[13] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnosel'skii, S. G. Mikhlin, L. S. Rakovshchik, V. Ya. Stet'senko, Integral equations, A reference text, Noordhoff, Leyden, 1975, xix+443 pp. | Zbl | Zbl

[14] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl