Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_5_a1, author = {Z. Kabluchko and M. A. Lifshits}, title = {Adaptive energy-saving approximation for stationary processes}, journal = {Izvestiya. Mathematics }, pages = {932--956}, publisher = {mathdoc}, volume = {83}, number = {5}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/} }
Z. Kabluchko; M. A. Lifshits. Adaptive energy-saving approximation for stationary processes. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 932-956. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/
[1] I. Ibragimov, Z. Kabluchko, M. Lifshits, “Some extensions of linear approximation and prediction problems for stationary processes”, Stochastic Process. Appl., 129:8 (2019), 2758–2782 | DOI
[2] Z. Kabluchko, M. Lifshits, “Least energy approximation for processes with stationary increments”, J. Theoret. Probab., 30:1 (2017), 268–296 | DOI | MR | Zbl
[3] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 400 pp.
[4] R. B. Ash, M. F. Gardner, Topics in stochastic processes, Probab. Math. Statist., 27, Academic Press, New York–London, 1975, viii+321 pp. | MR | Zbl
[5] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp. | MR | Zbl
[6] K. Hoffman, Banach spaces of analytic functions, Prentice Hall Series in Modern Analysis, Prentice Hall, Inc., Englewood Cliffs, NJ, 1962, xiii+217 pp. | MR | Zbl | Zbl
[7] P. J. Brockwell, R. A. Davis, Time series: theory and methods, Springer Ser. Statist., 2nd ed., Springer-Verlag, New York, 1991, xvi+577 pp. | DOI | MR | Zbl
[8] H. Dym, H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Dover Books Math., Reprint of the 1976 ed., Dover Publications, Mineola, NY, 2008, xiii+333 pp. | MR | Zbl
[9] A. M. Yaglom, Korrelyatsionnaya teoriya statsionarnykh sluchainykh funktsii s primerami iz meteorologii, Gidrometeoizdat, L., 1981, 282 pp.
[10] M. L. Kleptsyna, A. Le Breton, M. Viot, “About the linear-quadratic regulator problem under a fractional Brownian perturbation”, ESAIM Probab. Stat., 7 (2003), 161–170 | DOI | MR | Zbl
[11] M. L. Kleptsyna, A. Le Breton, M. Viot, “On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation”, ESAIM Probab. Stat., 9 (2005), 185–205 | DOI | MR | Zbl