Adaptive energy-saving approximation for stationary processes
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 932-956

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stationary process (with either discrete or continuous time) and find an adaptive approximating stationary process combining high quality approximation and other good properties that can be interpreted as additional smoothness or small expense of energy. The problem is solved in terms of spectral characteristics of the original process using the classical analytic methods of prediction theory.
Keywords: least-energy approximation, prediction, stationary process, stationary sequence.
@article{IM2_2019_83_5_a1,
     author = {Z. Kabluchko and M. A. Lifshits},
     title = {Adaptive energy-saving approximation for stationary processes},
     journal = {Izvestiya. Mathematics },
     pages = {932--956},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/}
}
TY  - JOUR
AU  - Z. Kabluchko
AU  - M. A. Lifshits
TI  - Adaptive energy-saving approximation for stationary processes
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 932
EP  - 956
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/
LA  - en
ID  - IM2_2019_83_5_a1
ER  - 
%0 Journal Article
%A Z. Kabluchko
%A M. A. Lifshits
%T Adaptive energy-saving approximation for stationary processes
%J Izvestiya. Mathematics 
%D 2019
%P 932-956
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/
%G en
%F IM2_2019_83_5_a1
Z. Kabluchko; M. A. Lifshits. Adaptive energy-saving approximation for stationary processes. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 932-956. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/