Adaptive energy-saving approximation for stationary processes
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 932-956.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stationary process (with either discrete or continuous time) and find an adaptive approximating stationary process combining high quality approximation and other good properties that can be interpreted as additional smoothness or small expense of energy. The problem is solved in terms of spectral characteristics of the original process using the classical analytic methods of prediction theory.
Keywords: least-energy approximation, prediction, stationary process, stationary sequence.
@article{IM2_2019_83_5_a1,
     author = {Z. Kabluchko and M. A. Lifshits},
     title = {Adaptive energy-saving approximation for stationary processes},
     journal = {Izvestiya. Mathematics },
     pages = {932--956},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/}
}
TY  - JOUR
AU  - Z. Kabluchko
AU  - M. A. Lifshits
TI  - Adaptive energy-saving approximation for stationary processes
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 932
EP  - 956
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/
LA  - en
ID  - IM2_2019_83_5_a1
ER  - 
%0 Journal Article
%A Z. Kabluchko
%A M. A. Lifshits
%T Adaptive energy-saving approximation for stationary processes
%J Izvestiya. Mathematics 
%D 2019
%P 932-956
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/
%G en
%F IM2_2019_83_5_a1
Z. Kabluchko; M. A. Lifshits. Adaptive energy-saving approximation for stationary processes. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 932-956. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a1/

[1] I. Ibragimov, Z. Kabluchko, M. Lifshits, “Some extensions of linear approximation and prediction problems for stationary processes”, Stochastic Process. Appl., 129:8 (2019), 2758–2782 | DOI

[2] Z. Kabluchko, M. Lifshits, “Least energy approximation for processes with stationary increments”, J. Theoret. Probab., 30:1 (2017), 268–296 | DOI | MR | Zbl

[3] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 400 pp.

[4] R. B. Ash, M. F. Gardner, Topics in stochastic processes, Probab. Math. Statist., 27, Academic Press, New York–London, 1975, viii+321 pp. | MR | Zbl

[5] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp. | MR | Zbl

[6] K. Hoffman, Banach spaces of analytic functions, Prentice Hall Series in Modern Analysis, Prentice Hall, Inc., Englewood Cliffs, NJ, 1962, xiii+217 pp. | MR | Zbl | Zbl

[7] P. J. Brockwell, R. A. Davis, Time series: theory and methods, Springer Ser. Statist., 2nd ed., Springer-Verlag, New York, 1991, xvi+577 pp. | DOI | MR | Zbl

[8] H. Dym, H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Dover Books Math., Reprint of the 1976 ed., Dover Publications, Mineola, NY, 2008, xiii+333 pp. | MR | Zbl

[9] A. M. Yaglom, Korrelyatsionnaya teoriya statsionarnykh sluchainykh funktsii s primerami iz meteorologii, Gidrometeoizdat, L., 1981, 282 pp.

[10] M. L. Kleptsyna, A. Le Breton, M. Viot, “About the linear-quadratic regulator problem under a fractional Brownian perturbation”, ESAIM Probab. Stat., 7 (2003), 161–170 | DOI | MR | Zbl

[11] M. L. Kleptsyna, A. Le Breton, M. Viot, “On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation”, ESAIM Probab. Stat., 9 (2005), 185–205 | DOI | MR | Zbl