Conformally invariant inequalities in domains in Euclidean space
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 909-931

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conformally invariant integral inequalities for real-valued functions defined on domains $\Omega$ in $n$-dimensional Euclidean space. The domains considered are of hyperbolic type, that is, they admit a hyperbolic radius $R=R(x, \Omega)$ satisfying the Liouville non-linear differential equation and vanishing on the boundary of the domain. We prove several inequalities which hold for all smooth compactly supported functions $u$ defined on a given domain of hyperbolic type. Here are two of them: \begin{gather*} \int|\nabla u|^2R^{2-n}\, dx \geqslant n (n-2)\int|u|^2R^{-n}\, dx, \\ \int|(\nabla u, \nabla R)|^p R^{p-s}\, dx\geqslant \frac{2^pn^p}{p^p}\int|u|^pR^{-s}\, dx, \end{gather*} where $n\geqslant 2$, $1\leqslant p \infty$ and $1+n/2 \leqslant s \infty$. We also study the relations between Euclidean and hyperbolic characteristics of domains.
Keywords: Hardy-type inequality, hyperbolic radius, Poincaré metric.
Mots-clés : Liouville equation
@article{IM2_2019_83_5_a0,
     author = {F. G. Avkhadiev},
     title = {Conformally invariant inequalities in domains in {Euclidean} space},
     journal = {Izvestiya. Mathematics },
     pages = {909--931},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Conformally invariant inequalities in domains in Euclidean space
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 909
EP  - 931
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/
LA  - en
ID  - IM2_2019_83_5_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Conformally invariant inequalities in domains in Euclidean space
%J Izvestiya. Mathematics 
%D 2019
%P 909-931
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/
%G en
%F IM2_2019_83_5_a0
F. G. Avkhadiev. Conformally invariant inequalities in domains in Euclidean space. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 909-931. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/