Conformally invariant inequalities in domains in Euclidean space
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 909-931.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conformally invariant integral inequalities for real-valued functions defined on domains $\Omega$ in $n$-dimensional Euclidean space. The domains considered are of hyperbolic type, that is, they admit a hyperbolic radius $R=R(x, \Omega)$ satisfying the Liouville non-linear differential equation and vanishing on the boundary of the domain. We prove several inequalities which hold for all smooth compactly supported functions $u$ defined on a given domain of hyperbolic type. Here are two of them: \begin{gather*} \int|\nabla u|^2R^{2-n}\, dx \geqslant n (n-2)\int|u|^2R^{-n}\, dx, \\ \int|(\nabla u, \nabla R)|^p R^{p-s}\, dx\geqslant \frac{2^pn^p}{p^p}\int|u|^pR^{-s}\, dx, \end{gather*} where $n\geqslant 2$, $1\leqslant p \infty$ and $1+n/2 \leqslant s \infty$. We also study the relations between Euclidean and hyperbolic characteristics of domains.
Keywords: Hardy-type inequality, hyperbolic radius, Poincaré metric.
Mots-clés : Liouville equation
@article{IM2_2019_83_5_a0,
     author = {F. G. Avkhadiev},
     title = {Conformally invariant inequalities in domains in {Euclidean} space},
     journal = {Izvestiya. Mathematics },
     pages = {909--931},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Conformally invariant inequalities in domains in Euclidean space
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 909
EP  - 931
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/
LA  - en
ID  - IM2_2019_83_5_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Conformally invariant inequalities in domains in Euclidean space
%J Izvestiya. Mathematics 
%D 2019
%P 909-931
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/
%G en
%F IM2_2019_83_5_a0
F. G. Avkhadiev. Conformally invariant inequalities in domains in Euclidean space. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 909-931. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/

[1] A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015, xv+263 pp. | DOI | MR | Zbl

[2] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl

[3] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl

[4] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1952, xii+324 pp. | MR | MR | Zbl

[5] T. Matskewich, P. E. Sobolevskii, “The best possible constant in generalized Hardy's inequality for convex domain in ${R}^n$”, Nonlinear Anal., 28:9 (1997), 1601–1610 | DOI | MR | Zbl

[6] M. Marcus, V. J. Mizel, Y. Pinchover, “On the best constant for Hardy's inequality in $\mathbb{R}^n$”, Trans. Amer. Math. Soc., 350:8 (1998), 3237–3255 | DOI | MR | Zbl

[7] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[8] F. G. Avkhadiev, I. K. Shafigullin, “Sharp estimates of Hardy constants for domains with special boundary properties”, Russian Math. (Iz. VUZ), 58:2 (2014), 58–61 | DOI | MR | Zbl

[9] G. Psaradakis, “$L^1$ Hardy inequalities with weights”, J. Geom. Anal., 23:4 (2013), 1703–1728 | DOI | MR | Zbl

[10] J. L. Fernández, “Domains with strong barrier”, Rev. Mat. Iberoamericana, 5:1-2 (1989), 47–65 | DOI | MR | Zbl

[11] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbb{R}^n$”, J. London Math. Soc. (2), 34:2 (1986), 274–290 | DOI | MR | Zbl

[12] Ch. Pommerenke, “Uniformly perfect sets and the Poincaré metric”, Arch. Math. (Basel), 32:2 (1979), 192–199 | DOI | MR | Zbl

[13] F. G. Avkhadiev, K.-J. Wirths, Schwarz–Pick type inequalities, Front. Math., Birkhäuser Verlag, Basel, 2009, viii+156 pp. | DOI | MR | Zbl

[14] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl

[15] L. V. Ahlfors, Moebius transformations in several dimensions, Ordway Professorship Lectures Math., Univ. of Minnesota, School of Mathematics, Minneapolis, MN, 1981, ii+150 pp. | MR | MR | Zbl | Zbl

[16] C. Bandle, M. Flucher, “Harmonic radius and concentration of energy; hyperbolic radius and Liouville's Equations $\Delta U=e^U$ and $\Delta U =U^{\frac{n+2}{n-2}}$”, SIAM Rev., 38:2 (1996), 191–238 | DOI | MR | Zbl

[17] C. Loewner, L. Nirenberg, “Partial differential equations invariant under conformal or projective transformations”, Contribution to analysis, A collection of papers dedicated to L. Bers, Academic Press, New York, 1974, 245–272 | MR | Zbl

[18] R. Schoen, Shing-Tung Yau, “Conformally flat manifolds, Kleinian groups and scalar curvature”, Invent. Math., 92:1 (1988), 47–71 | DOI | MR | Zbl

[19] J. L. Fernández, J. M. Rodríguez, “The exponent of convergence of Riemann surfaces. Bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Ser. A I Math., 15:1 (1990), 165–183 | DOI | MR | Zbl

[20] F. G. Avkhadiev, “Integral inequalities in domains of hyperbolic type and their applications”, Sb. Math., 206:12 (2015), 1657–1681 | DOI | DOI | MR | Zbl

[21] F. G. Avkhadiev, “Konformno invariantnye neravenstva”, Kompleksnyi analiz, Itogi nauki i tekhniki. Ser. Sovrem. mat. i ee pril. Temat. obz., 142, VINITI RAN, M., 2017, 28–41 | MR

[22] F. G. Avkhadiev, “Rellich inequalities for polyharmonic operators in plane domains”, Sb. Math., 209:3 (2018), 292–319 | DOI | DOI | MR | Zbl

[23] D. Sullivan, “Related aspects of positivity in Riemannian geometry”, J. Differential Geom., 25:3 (1987), 327–351 | DOI | MR | Zbl

[24] F. Avkhadiev, A. Laptev, “Hardy inequalities for nonconvex domains”, Around the research of Vladimir Maz'ya, v. I, Int. Math. Ser. (N. Y.), 11, Springer, New York, 2010, 1–12 | DOI | MR | Zbl

[25] F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to 1/4”, Izv. Math., 78:5 (2014), 855–876 | DOI | DOI | MR | Zbl

[26] F. G. Avkhadiev, “Hardy–Rellich inequalities in domains of the Euclidean space”, J. Math. Anal. Appl., 442:2 (2016), 469–484 | DOI | MR | Zbl

[27] F. G. Avkhadiev, “Hardy–Rellich integral inequalities in domains satisfying the exterior sphere condition”, St. Petersbg. Math. J., 30:2 (2019), 161–179 | DOI | MR | Zbl

[28] M. P. Owen, “The Hardy–Rellich inequality for polyharmonic operators”, Proc. Roy. Soc. Edinburgh Sect. A, 129:4 (1999), 825–839 | DOI | MR | Zbl