Conformally invariant inequalities in domains in Euclidean space
Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 909-931
Voir la notice de l'article provenant de la source Math-Net.Ru
We study conformally invariant integral inequalities for real-valued functions defined on domains $\Omega$ in $n$-dimensional Euclidean space. The domains considered are of hyperbolic type, that is, they admit a hyperbolic radius $R=R(x, \Omega)$ satisfying the Liouville non-linear differential equation and vanishing on the boundary of the domain. We prove several inequalities which hold for all smooth compactly supported functions $u$ defined on a given domain of hyperbolic type. Here are two of them:
\begin{gather*}
\int|\nabla u|^2R^{2-n}\, dx \geqslant n (n-2)\int|u|^2R^{-n}\, dx,
\\
\int|(\nabla u, \nabla R)|^p R^{p-s}\, dx\geqslant \frac{2^pn^p}{p^p}\int|u|^pR^{-s}\, dx,
\end{gather*}
where $n\geqslant 2$, $1\leqslant p \infty$ and $1+n/2 \leqslant s \infty$. We also study the relations between Euclidean and hyperbolic characteristics of domains.
Keywords:
Hardy-type inequality, hyperbolic radius, Poincaré metric.
Mots-clés : Liouville equation
Mots-clés : Liouville equation
@article{IM2_2019_83_5_a0,
author = {F. G. Avkhadiev},
title = {Conformally invariant inequalities in domains in {Euclidean} space},
journal = {Izvestiya. Mathematics },
pages = {909--931},
publisher = {mathdoc},
volume = {83},
number = {5},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/}
}
F. G. Avkhadiev. Conformally invariant inequalities in domains in Euclidean space. Izvestiya. Mathematics , Tome 83 (2019) no. 5, pp. 909-931. http://geodesic.mathdoc.fr/item/IM2_2019_83_5_a0/