Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_4_a9, author = {V. V. Przyjalkowski and I. A. Cheltsov and K. A. Shramov}, title = {Fano threefolds with infinite automorphism groups}, journal = {Izvestiya. Mathematics }, pages = {860--907}, publisher = {mathdoc}, volume = {83}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a9/} }
TY - JOUR AU - V. V. Przyjalkowski AU - I. A. Cheltsov AU - K. A. Shramov TI - Fano threefolds with infinite automorphism groups JO - Izvestiya. Mathematics PY - 2019 SP - 860 EP - 907 VL - 83 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a9/ LA - en ID - IM2_2019_83_4_a9 ER -
V. V. Przyjalkowski; I. A. Cheltsov; K. A. Shramov. Fano threefolds with infinite automorphism groups. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 860-907. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a9/
[1] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl
[2] V. A. Iskovskih, “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl
[3] S. Mori, S. Mukai, “Classification of Fano $3$-folds with $B_{2}\geq 2$”, Manuscripta Math., 36:2 (1981/82), 147–162 ; “Erratum”, 110:3 (2003), 407 | DOI | MR | Zbl | DOI | MR
[4] S. Mori, S. Mukai, “Extremal rays and Fano 3-folds”, The Fano conference, Univ. Torino, Turin, 2004, 37–50 | MR | Zbl
[5] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548 | DOI | MR | Zbl
[6] S. Mukai, “Curves, $K3$ surfaces and Fano $3$-folds of genus $\leq 10$”, Algebraic geometry and commutative algebra, In honor of M. Nagata, v. 1, Kinokuniya, Tokyo, 1988, 357–377 | MR | Zbl
[7] S. Mukai, H. Umemura, “Minimal rational threefolds”, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., 1016, Springer, Berlin, 1983, 490–518 | DOI | MR | Zbl
[8] Yu. G. Prokhorov, “Automorphism groups of Fano manifolds”, Russian Math. Surveys, 45:3 (1990), 222–223 | DOI | MR | Zbl
[9] A. G. Kuznetsov, Yu. G. Prokhorov, C. A. Shramov, “Hilbert schemes of lines and conics and automorphism groups of Fano threefolds”, Japan. J. Math., 13:1 (2018), 109–185 | DOI | MR | Zbl
[10] V. V. Batyrev, “Toroidal Fano 3-folds”, Math. USSR-Izv., 19:1 (1982), 13–25 | DOI | MR | Zbl
[11] K. Watanabe, M. Watanabe, “The classification of Fano $3$-folds with torus embeddings”, Tokyo J. Math., 5:1 (1982), 37–48 | DOI | MR | Zbl
[12] H. Süss, “Fano threefolds with $2$-torus action. A picture book”, Doc. Math., 19 (2014), 905–940 | MR | Zbl
[13] Zhizhong Huang, P. Montero, Fano threefolds as equivariant compactifications of the vector group, 2018, arXiv: 1802.08090
[14] B. Hassett, Yu. Tschinkel, “Geometry of equivariant compactifications of $\mathbf G^n_a$”, Internat. Math. Res. Notices, 1999:22 (1999), 1211–1230 | DOI | MR | Zbl
[15] H. Umemura, “Minimal rational threefolds. II”, Nagoya Math. J., 110 (1988), 15–80 | DOI | MR | Zbl
[16] T. Nakano, “On equivariant completions of $3$-dimensional homogeneous spaces of ${SL}(2,{C})$”, Japan. J. Math. (N.S.), 15:2 (1989), 221–273 | DOI | MR | Zbl
[17] T. Nakano, “Projective threefolds on which $\mathbf{SL}(2)$ acts with $2$-dimensional general orbits”, Trans. Amer. Math. Soc., 350:7 (1998), 2903–2924 | DOI | MR | Zbl
[18] Baohua Fu, P. Montero, Equivariant compactifications of vector groups with high index, 2018, arXiv: 1806.02010
[19] Baohua Fu, Wenhao Ou, Junyi Xie, On Fano manifolds of Picard number one with big automorphism groups, 2018, arXiv: 1809.10623
[20] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | MR | Zbl
[21] S. Mori, S. Mukai, “On Fano $3$-folds with $B_{2}\geq 2$”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 101–129 | DOI | MR | Zbl
[22] I. V. Demin, “Ogranichennost stepeni trekhmernykh mnogoobrazii Fano, predstavimykh rassloeniyami na koniki”, UMN, 36:3(219) (1981), 209–210 ; I. V. Demin, “Bounds on the degree of a three-dimensional Fano variety representable by a fibering on a conic”, Russian Math. Surveys, 36:3 (1981), 241–242 ; “Дополнение к статье “Трехмерные многообразия Фано, представимые в виде расслоений на прямые” ”, Изв. АН СССР. Сер. матем., 46:3 (1982), 666–667 ; “Addendum to the paper “Fano 3-folds representable in the form of line bundles””, Math. USSR-Izv., 20:3 (1983), 625–626 | MR | Zbl | DOI | MR | Zbl | DOI
[23] M. Szurek, J. A. Wiśniewski, “Fano bundles of rank $2$ on surfaces”, Compositio Math., 76:1-2 (1990), 295–305 | MR | Zbl
[24] Y. Matsushima, “Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kaehlérienne”, Nagoya Math. J., 11 (1957), 145–150 | DOI | MR | Zbl
[25] A. Futaki, “An obstruction to the existence of Einstein Kähler metrics”, Invent. Math., 73:3 (1983), 437–443 | DOI | MR | Zbl
[26] Xu-Jia Wang, Xiaohua Zhu, “Kähler–Ricci solitons on toric manifolds with positive first Chern class”, Adv. Math., 188:1 (2004), 87–103 | DOI | MR | Zbl
[27] Gang Tian, “On Kähler–Einstein metrics on certain Kähler manifolds with ${C}_1(M)>0$”, Invent. Math., 89:2 (1987), 225–246 | DOI | MR | Zbl
[28] A. M. Nadel, “Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature”, Ann. of Math. (2), 132:3 (1990), 549–596 | DOI | MR | Zbl
[29] S. K. Donaldson, “Kähler geometry on toric manifolds, and some other manifolds with large symmetry”, Handbook of geometric analysis, v. 1, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA, 2008, 29–75 | MR | Zbl
[30] I. A. Cheltsov, K. A. Shramov, “Extremal metrics on del Pezzo threefolds”, Proc. Steklov Inst. Math., 264 (2009), 30–44 | DOI | MR | Zbl
[31] H. Süß, “Kähler–Einstein metrics on symmetric Fano $T$-varieties”, Adv. Math., 246 (2013), 100–113 | DOI | MR | Zbl
[32] I. Cheltsov, C. Shramov, Kaehler–Einstein Fano threefolds of degree $22$, 2018, arXiv: 1803.02774
[33] Xiuxiong Chen, S. Donaldson, Song Sun, “Kähler–Einstein metrics on Fano manifolds”, I. Approximation of metrics with cone singularities, J. Amer. Math. Soc., 28:1 (2015), 183–197 ; II. Limits with cone angle less than $2\pi$, 199–234 ; III. Limits as cone angle approaches $2\pi$ and completion of the main proof, 235–278 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[34] V. Datar, G. Székelyhidi, “Kähler–Einstein metrics along the smooth continuity method”, Geom. Funct. Anal., 26:4 (2016), 975–1010 | DOI | MR | Zbl
[35] N. Ilten, H. Süss, “$K$-stability for Fano manifolds with torus action of complexity $1$”, Duke Math. J., 166:1 (2017), 177–204 | DOI | MR | Zbl
[36] Yu. Prokhorov, “$G$-Fano threefolds. II”, Adv. Geom., 13:3 (2013), 419–434 | DOI | MR | Zbl
[37] A. Kuznetsov, Yu. Prokhorov, “Prime Fano threefolds of genus $12$ with a $\mathbb{G}_\mathrm{m}$-action”, Épijournal Géom. Algébrique, 2 (2018), 3, 14 pp. | MR | Zbl
[38] Yu. Prokhorov, M. Zaidenberg, “Fano–Mukai fourfolds of genus $10$ as compactifications of $\mathbb{C}^4$”, Eur. J. Math., 4:3 (2018), 1197–1263 | DOI | MR
[39] Yu. Prokhorov, C. Shramov, “Jordan constant for Cremona group of rank $3$”, Mosc. Math. J., 17:3 (2017), 457–509 | MR
[40] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl
[41] V. G. Sarkisov, “Birational automorphisms of conic bundles”, Math. USSR-Izv., 17:1 (1981), 177–202 | DOI | MR | Zbl
[42] V. G. Sarkisov, “On conic bundle structures”, Math. USSR-Izv., 20:2 (1983), 355–390 | DOI | MR | Zbl
[43] Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456 | DOI | DOI | MR | Zbl
[44] M. Reid, Undergraduate algebraic geometry, London Math. Soc. Stud. Texts, 12, Cambridge Univ. Press, Cambridge, 1988, viii+129 pp. | DOI | MR | MR | Zbl
[45] I. Cheltsov, C. Shramov, Cremona groups and the icosahedron, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016, xxi+504 pp. | DOI | MR | Zbl
[46] G. Sanna, Rational curves and instantons on the Fano threefold $Y_5$, 2014, arXiv: 1411.7994
[47] M. Furushima, N. Nakayama, “The family of lines on the Fano threefold $V_5$”, Nagoya Math. J., 116 (1989), 111–122 | DOI | MR | Zbl
[48] A. Iliev, “The Fano surface of the Gushel threefold”, Compositio Math., 94:1 (1994), 81–107 | MR | Zbl
[49] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp. | DOI | MR | Zbl
[50] V. V. Przhyjalkowski, I. A. Chel'tsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421 | DOI | DOI | MR | Zbl
[51] M. Reid, “Chapters on algebraic surfaces”, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 3–159 | DOI | MR | Zbl
[52] I. Cheltsov, V. Przyjalkowski, C. Shramov, “Which quartic double solids are rational?”, J. Algebraic Geom., 28:2 (2019), 201–243 ; (2015), arXiv: 1508.07277 | DOI | MR | Zbl
[53] K. Takeuchi, Weak Fano threefolds with del Pezzo fibration, 2009, arXiv: 0910.2188
[54] P. Jahnke, T. Peternell, I. Radloff, “Threefolds with big and nef anticanonical bundles. II”, Cent. Eur. J. Math., 9:3 (2011), 449–488 | DOI | MR | Zbl
[55] I. A. Cheltsov, K. A. Shramov, “Log canonical thresholds of smooth Fano threefolds”, Russian Math. Surveys, 63:5 (2008), 859–958 | DOI | DOI | MR | Zbl