Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_4_a7, author = {I. A. Panin}, title = {Nice triples and moving lemmas for motivic spaces}, journal = {Izvestiya. Mathematics }, pages = {796--829}, publisher = {mathdoc}, volume = {83}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a7/} }
I. A. Panin. Nice triples and moving lemmas for motivic spaces. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 796-829. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a7/
[1] I. Panin, Proof of Grothendieck–Serre conjecture on principal $G$-bundles over semi-local regular domains containing a finite field, 2017, arXiv: 1707.01767
[2] F. Morel, $\mathbb A1$-algebraic topology over a field, Lecture Notes in Math., 2052, Springer, Heidelberg, 2012, x+259 pp. | DOI | MR | Zbl
[3] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl
[4] V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137 | MR | Zbl
[5] I. Panin, “Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov)”, Homology Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl
[6] F. Morel, V. Voevodsky, “$\mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 45–143 | DOI | MR | Zbl
[7] M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl
[8] M. Artin, “Comparaison avec la cohomologie classique: cas d'un préschéma lisse”, Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), v. 3, Lecture Notes in Math., 305, Exp. XI, Springer-Verlag, Berlin–New York, 1973, 64–78 | MR | Zbl
[9] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995, xvi+785 pp. | DOI | MR | Zbl
[10] M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. École Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl
[11] J.-L. Colliot-Thélène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 97–122 | DOI | MR | Zbl
[12] B. Poonen, “Bertini theorems over finite fields”, Ann. of Math. (2), 160:3 (2004), 1099–1127 | DOI | MR | Zbl
[13] F. Charles, B. Poonen, “Bertini irreducibility theorems over finite fields”, J. Amer. Math. Soc., 29:1 (2016), 81–94 ; (2013), arXiv: 1311.4960 | DOI | MR | Zbl