Nice triples and moving lemmas for motivic spaces
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 796-829.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains geometric tools developed to solve the finite-field case of the Grothendieck–Serre conjecture in [1]. It turns out that the same machinery can be applied to solve some cohomological questions. In particular, for any presheaf of $S^1$-spectra $E$ on the category of $k$-smooth schemes, all its Nisnevich sheaves of $\mathbf{A}^1$-stable homotopy groups are strictly homotopy invariant. This shows that $E$ is $\mathbf{A}^1$-local if and only if all its Nisnevich sheaves of ordinary stable homotopy groups are strictly homotopy invariant. The latter result was obtained by Morel [2] in the case when the field $k$ is infinite. However, when $k$ is finite, Morel's proof does not work since it uses Gabber's presentation lemma and there is no published proof of that lemma. We do not use Gabber's presentation lemma. Instead, we develop the machinery of nice triples invented in [3]. This machinery is inspired by Voevodsky's technique of standard triples [4].
Keywords: cohomology theory, motivic spaces, Cousin complex.
@article{IM2_2019_83_4_a7,
     author = {I. A. Panin},
     title = {Nice triples and moving lemmas for motivic spaces},
     journal = {Izvestiya. Mathematics },
     pages = {796--829},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a7/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - Nice triples and moving lemmas for motivic spaces
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 796
EP  - 829
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a7/
LA  - en
ID  - IM2_2019_83_4_a7
ER  - 
%0 Journal Article
%A I. A. Panin
%T Nice triples and moving lemmas for motivic spaces
%J Izvestiya. Mathematics 
%D 2019
%P 796-829
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a7/
%G en
%F IM2_2019_83_4_a7
I. A. Panin. Nice triples and moving lemmas for motivic spaces. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 796-829. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a7/

[1] I. Panin, Proof of Grothendieck–Serre conjecture on principal $G$-bundles over semi-local regular domains containing a finite field, 2017, arXiv: 1707.01767

[2] F. Morel, $\mathbb A1$-algebraic topology over a field, Lecture Notes in Math., 2052, Springer, Heidelberg, 2012, x+259 pp. | DOI | MR | Zbl

[3] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl

[4] V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137 | MR | Zbl

[5] I. Panin, “Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov)”, Homology Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl

[6] F. Morel, V. Voevodsky, “$\mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 45–143 | DOI | MR | Zbl

[7] M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198 | DOI | MR | Zbl

[8] M. Artin, “Comparaison avec la cohomologie classique: cas d'un préschéma lisse”, Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), v. 3, Lecture Notes in Math., 305, Exp. XI, Springer-Verlag, Berlin–New York, 1973, 64–78 | MR | Zbl

[9] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995, xvi+785 pp. | DOI | MR | Zbl

[10] M. Ojanguren, I. Panin, “A purity theorem for the Witt group”, Ann. Sci. École Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl

[11] J.-L. Colliot-Thélène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 97–122 | DOI | MR | Zbl

[12] B. Poonen, “Bertini theorems over finite fields”, Ann. of Math. (2), 160:3 (2004), 1099–1127 | DOI | MR | Zbl

[13] F. Charles, B. Poonen, “Bertini irreducibility theorems over finite fields”, J. Amer. Math. Soc., 29:1 (2016), 81–94 ; (2013), arXiv: 1311.4960 | DOI | MR | Zbl