Birationally rigid complete intersections of high codimension
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 743-769.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a Fano complete intersection of codimension $k$ and index $1$ in the complex projective space ${\mathbb P}^{M+k}$ for $k\geqslant 20$ and $M\geqslant 8k\log k$ with at most multi-quadratic singularities is birationally superrigid. The codimension of the complement of the set of birationally superrigid complete intersections in the natural moduli space is shown to be at least $(M-5k)(M-6k)/2$. The proof is based on the technique of hypertangent divisors combined with the recently discovered $4n^2$-inequality for complete intersection singularities.
Keywords: birational rigidity, maximal singularity, multiplicity, hypertangent divisor, complete intersection singularity.
@article{IM2_2019_83_4_a5,
     author = {D. Evans and A. V. Pukhlikov},
     title = {Birationally rigid complete intersections of high codimension},
     journal = {Izvestiya. Mathematics },
     pages = {743--769},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a5/}
}
TY  - JOUR
AU  - D. Evans
AU  - A. V. Pukhlikov
TI  - Birationally rigid complete intersections of high codimension
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 743
EP  - 769
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a5/
LA  - en
ID  - IM2_2019_83_4_a5
ER  - 
%0 Journal Article
%A D. Evans
%A A. V. Pukhlikov
%T Birationally rigid complete intersections of high codimension
%J Izvestiya. Mathematics 
%D 2019
%P 743-769
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a5/
%G en
%F IM2_2019_83_4_a5
D. Evans; A. V. Pukhlikov. Birationally rigid complete intersections of high codimension. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 743-769. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a5/

[1] A. Pukhlikov, Birationally rigid varieties, Math. Surveys Monogr., 190, Amer. Math. Soc., Providence, RI, 2013, vi+365 pp. | DOI | MR | Zbl

[2] A. V. Pukhlikov, “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 2001:541 (2001), 55–79 | DOI | MR | Zbl

[3] A. V. Pukhlikov, “Birationally rigid Fano complete intersections. II”, J. Reine Angew. Math., 2014:688 (2014), 209–218 | DOI | MR | Zbl

[4] F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18 | DOI | MR | Zbl

[5] A. V. Pukhlikov, “Birationally rigid complete intersections with a singular point of high multiplicity”, Proc. Edinb. Math. Soc. (2), 62:1 (2019), 221–239 ; (2017), arXiv: 1704.03795 | DOI | MR

[6] A. V. Pukhlikov, “The $4n^2$-inequality for complete intersection singularities”, Arnold Math. J., 3:2 (2017), 187–196 | DOI | MR | Zbl

[7] D. Evans, A. Pukhlikov, “Birationally rigid complete intersections of codimension two”, Bull. Korean Math. Soc., 54:5 (2017), 1627–1654 ; (2016), arXiv: 1604.00512 | DOI | MR | Zbl

[8] Th. Eckl, A. Pukhlikov, “On the locus of nonrigid hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 121–139 | DOI | MR | Zbl

[9] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[10] V. A. Iskovskikh, A. V. Pukhlikov, “Birational automorphisms of multidimensional algebraic manifolds”, J. Math. Sci. (N. Y.), 82:4 (1996), 3528–3613 | DOI | MR | Zbl

[11] I. Cheltsov, M. Grinenko, “Birational rigidity is not an open property”, Bull. Korean Math. Soc., 54:5 (2017), 1485–1526 | DOI | MR | Zbl

[12] A. V. Pukhlikov, “Birationally rigid complete intersections of quadrics and cubics”, Izv. Math., 77:4 (2013), 795–845 | DOI | DOI | MR | Zbl

[13] A. V. Pukhlikov, “Birationally rigid Fano fibre spaces. II”, Izv. Math., 79:4 (2015), 809–837 | DOI | DOI | MR | Zbl

[14] A. V. Pukhlikov, “Birational geometry of algebraic varieties fibred into Fano double spaces”, Izv. Math., 81:3 (2017), 618–644 | DOI | DOI | MR | Zbl

[15] E. Johnstone, “Birationally rigid singular double quadrics and double cubics”, Math. Notes, 102:4 (2017), 508–515 | DOI | DOI | MR | Zbl

[16] F. Suzuki, “Birational rigidity of complete intersections”, Math. Z., 285:1-2 (2017), 479–492 | DOI | MR | Zbl

[17] H. Ahmadinezhad, T. Okada, “Birationally rigid Pfaffian Fano $3$-folds”, Algebr. Geom., 5:2 (2018), 160–199 ; (2015), arXiv: 1508.02974 | DOI | MR | Zbl

[18] I. A. Chel'tsov, L. Wotzlaw, “Nonrational complete intersections”, Proc. Steklov Inst. Math., 246 (2004), 303–307 | MR | Zbl

[19] I. A. Cheltsov, “Non-rationality of the 4-dimensional smooth complete intersection of a quadric and a quartic not containing planes”, Sb. Math., 194:11 (2003), 1679–1699 | DOI | DOI | MR | Zbl

[20] T. Okada, “Birational Mori fiber structures of ${\mathbb Q}$-Fano $3$-fold weighted complete intersections”, Proc. Lond. Math. Soc. (3), 109:6 (2014), 1549–1600 | DOI | MR | Zbl

[21] T. Okada, “Birational Mori fiber structures of $\mathbb Q$-Fano $3$-fold weighted complete intersections. II”, J. Reine Angew. Math., 2018:738 (2018), 73–129 ; (2013), arXiv: 1310.5320 | DOI | MR | Zbl

[22] T. Okada, Birational Mori fiber structures of ${\mathbb Q}$-Fano $3$-fold weighted complete intersections. III, 2014, arXiv: 1409.1506

[23] Ziquan Zhuang, Birational superrigidity and $K$-stability of Fano complete intersections of index one, 2018, arXiv: 1802.08389