On the nonsymplectic involutions of the Hilbert square of a K3 surface
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 731-742
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the interplay between the moduli spaces of ample
$\langle 2\rangle$-polarized IHS manifolds of type $\mathrm{K3}^{[2]}$
and of IHS manifolds of type $\mathrm{K3}^{[2]}$ with a non-symplectic
involution with invariant lattice of rank one. In particular, we
describe geometrically some new involutions of the Hilbert square of a K3 surface whose existence was proven in a previous paper of
Boissière, Cattaneo, Nieper-Wisskirchen, and Sarti.
Keywords:
irreducible holomorphic symplectic manifolds, non-symplectic automorphisms, ample cone.
@article{IM2_2019_83_4_a4,
author = {S. Boissii\`ere and A. Cattaneo and D. G. Markushevich and A. Sarti},
title = {On the nonsymplectic involutions of the {Hilbert} square of a {K3} surface},
journal = {Izvestiya. Mathematics },
pages = {731--742},
publisher = {mathdoc},
volume = {83},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/}
}
TY - JOUR AU - S. Boissiière AU - A. Cattaneo AU - D. G. Markushevich AU - A. Sarti TI - On the nonsymplectic involutions of the Hilbert square of a K3 surface JO - Izvestiya. Mathematics PY - 2019 SP - 731 EP - 742 VL - 83 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/ LA - en ID - IM2_2019_83_4_a4 ER -
%0 Journal Article %A S. Boissiière %A A. Cattaneo %A D. G. Markushevich %A A. Sarti %T On the nonsymplectic involutions of the Hilbert square of a K3 surface %J Izvestiya. Mathematics %D 2019 %P 731-742 %V 83 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/ %G en %F IM2_2019_83_4_a4
S. Boissiière; A. Cattaneo; D. G. Markushevich; A. Sarti. On the nonsymplectic involutions of the Hilbert square of a K3 surface. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 731-742. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/