On the nonsymplectic involutions of the Hilbert square of a K3 surface
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 731-742

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the interplay between the moduli spaces of ample $\langle 2\rangle$-polarized IHS manifolds of type $\mathrm{K3}^{[2]}$ and of IHS manifolds of type $\mathrm{K3}^{[2]}$ with a non-symplectic involution with invariant lattice of rank one. In particular, we describe geometrically some new involutions of the Hilbert square of a K3 surface whose existence was proven in a previous paper of Boissière, Cattaneo, Nieper-Wisskirchen, and Sarti.
Keywords: irreducible holomorphic symplectic manifolds, non-symplectic automorphisms, ample cone.
@article{IM2_2019_83_4_a4,
     author = {S. Boissii\`ere and A. Cattaneo and D. G. Markushevich and A. Sarti},
     title = {On the nonsymplectic involutions of the {Hilbert} square of a {K3} surface},
     journal = {Izvestiya. Mathematics },
     pages = {731--742},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/}
}
TY  - JOUR
AU  - S. Boissiière
AU  - A. Cattaneo
AU  - D. G. Markushevich
AU  - A. Sarti
TI  - On the nonsymplectic involutions of the Hilbert square of a K3 surface
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 731
EP  - 742
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/
LA  - en
ID  - IM2_2019_83_4_a4
ER  - 
%0 Journal Article
%A S. Boissiière
%A A. Cattaneo
%A D. G. Markushevich
%A A. Sarti
%T On the nonsymplectic involutions of the Hilbert square of a K3 surface
%J Izvestiya. Mathematics 
%D 2019
%P 731-742
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/
%G en
%F IM2_2019_83_4_a4
S. Boissiière; A. Cattaneo; D. G. Markushevich; A. Sarti. On the nonsymplectic involutions of the Hilbert square of a K3 surface. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 731-742. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/