On the nonsymplectic involutions of the Hilbert square of a K3 surface
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 731-742.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the interplay between the moduli spaces of ample $\langle 2\rangle$-polarized IHS manifolds of type $\mathrm{K3}^{[2]}$ and of IHS manifolds of type $\mathrm{K3}^{[2]}$ with a non-symplectic involution with invariant lattice of rank one. In particular, we describe geometrically some new involutions of the Hilbert square of a K3 surface whose existence was proven in a previous paper of Boissière, Cattaneo, Nieper-Wisskirchen, and Sarti.
Keywords: irreducible holomorphic symplectic manifolds, non-symplectic automorphisms, ample cone.
@article{IM2_2019_83_4_a4,
     author = {S. Boissii\`ere and A. Cattaneo and D. G. Markushevich and A. Sarti},
     title = {On the nonsymplectic involutions of the {Hilbert} square of a {K3} surface},
     journal = {Izvestiya. Mathematics },
     pages = {731--742},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/}
}
TY  - JOUR
AU  - S. Boissiière
AU  - A. Cattaneo
AU  - D. G. Markushevich
AU  - A. Sarti
TI  - On the nonsymplectic involutions of the Hilbert square of a K3 surface
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 731
EP  - 742
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/
LA  - en
ID  - IM2_2019_83_4_a4
ER  - 
%0 Journal Article
%A S. Boissiière
%A A. Cattaneo
%A D. G. Markushevich
%A A. Sarti
%T On the nonsymplectic involutions of the Hilbert square of a K3 surface
%J Izvestiya. Mathematics 
%D 2019
%P 731-742
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/
%G en
%F IM2_2019_83_4_a4
S. Boissiière; A. Cattaneo; D. G. Markushevich; A. Sarti. On the nonsymplectic involutions of the Hilbert square of a K3 surface. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 731-742. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a4/

[1] B. Saint-Donat, “Projective models of $K-3$ surfaces”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR | Zbl

[2] A. Beauville, “Some remarks on Kähler manifolds with $c_{1}=0$”, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, Birkhäuser Boston, Boston, MA, 1983, 1–26 | MR | Zbl

[3] A. Beauville, “Variétés Kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom., 18:4 (1983), 755–782 | DOI | MR | Zbl

[4] V. Gritsenko, K. Hulek, G. K. Sankaran, “Moduli spaces of irreducible symplectic manifolds”, Compos. Math., 146:2 (2010), 404–434 | DOI | MR | Zbl

[5] O. Debarre, E. Macrì, “On the period map for polarized hyperkähler fourfolds”, Int. Math. Res. Not. IMRN, 2018, rnx333, 37 pp. ; 2017, arXiv: 1704.01439 | DOI

[6] S. Boissiére, A. Cattaneo, M. Nieper-Wisskirchen, A. Sarti, “The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface”, K3 surfaces and their moduli, Progr. Math., 315, Birkhäuser/Springer, Cham, 2016, 1–15 | DOI | MR | Zbl

[7] E. Markman, “A survey of Torelli and monodromy results for holomorphic-symplectic varieties”, Complex and differential geometry, Springer Proc. Math., 8, Springer, Heidelberg, 2011, 257–322 | DOI | MR | Zbl

[8] A. Beauville, “Antisymplectic involutions of holomorphic symplectic manifolds”, J. Topol., 4:2 (2011), 300–304 | DOI | MR | Zbl

[9] K. G. O'Grady, “Involutions and linear systems on holomorphic symplectic manifolds”, Geom. Funct. Anal., 15:6 (2005), 1223–1274 | DOI | MR | Zbl

[10] E. Markman, “Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a $K3$ surface”, Internat. J. Math., 21:2 (2010), 169–223 | DOI | MR | Zbl

[11] E. Markman, “On the monodromy of moduli spaces of sheaves on $K3$ surfaces”, J. Algebraic Geom., 17:1 (2008), 29–99 | DOI | MR | Zbl

[12] G. Mongardi, “On natural deformations of symplectic automorphisms of manifolds of $K3^{[n]}$ type”, C. R. Math. Acad. Sci. Paris, 351:13-14 (2013), 561–564 | DOI | MR | Zbl

[13] S. Boissière, C. Camere, A. Sarti, “Classification of automorphisms on a deformation family of hyper-Kähler four-folds by $p$-elementary lattices”, Kyoto J. Math., 56:3 (2016), 465–499 | DOI | MR | Zbl

[14] A. Cattaneo, Automorphisms of Hilbert schemes of points on a generic projective K3 surface, 2018, arXiv: 1801.05682

[15] C. Camere, G. Kapustka, M. Kapustka, G. Mongardi, “Verra four-folds, twisted sheaves, and the last involution”, Int. Math. Res. Not. IMRN, 2018, rnx327, 50 pp. ; 2017, arXiv: 1706.08955 | DOI

[16] V. Gritsenko, K. Hulek, G. K. Sankaran, “Moduli of K3 surfaces and irreducible symplectic manifolds”, Handbook of moduli, v. 1, Adv. Lect. Math. (ALM), 24, Int. Press, Somerville, MA, 2013, 459–526 | MR | Zbl

[17] S. Boissière, C. Camere, A. Sarti, “Complex ball quotients from manifolds of $K3^{[n]}$-type”, J. Pure Appl. Algebra, 223:3 (2019), 1123–1138 | DOI | MR | Zbl

[18] K. G. O'Grady, “Double covers of EPW-sextics”, Michigan Math. J., 62:1 (2013), 143–184 | DOI | MR | Zbl

[19] D. Eisenbud, S. Popescu, C. Walter, “Lagrangian subbundles and codimension 3 subcanonical subschemes”, Duke Math. J., 107:3 (2001), 427–467 | DOI | MR | Zbl

[20] K. G. O'Grady, “Irreducible symplectic 4-folds and Eisenbud–Popescu–Walter sextics”, Duke Math. J., 134:1 (2006), 99–137 | DOI | MR | Zbl

[21] M. Joumaah, “Non-symplectic involutions of irreducible symplectic manifolds of $K3^{[n]}$-type”, Math. Z., 283:3-4 (2016), 761–790 | DOI | MR | Zbl

[22] A. Ferretti, “The Chow ring of double EPW sextics”, Algebra Number Theory, 6:3 (2012), 539–560 | DOI | MR | Zbl

[23] D. R. Morrison, “On K3 surfaces with large Picard number”, Invent. Math., 75:1 (1984), 105–121 | DOI | MR | Zbl

[24] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math., 158, Cambridge Univ. Press, Cambridge, 2016, xi+485 pp. | DOI | MR | Zbl

[25] M. Reid, “Chapters on algebraic surfaces”, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 3–159 | DOI | MR | Zbl

[26] K. Oguiso, “Isomorphic quartic $K3$ surfaces in the view of Cremona and projective transformations”, Taiwanese J. Math., 21:3 (2017), 671–688 | DOI | MR | Zbl

[27] D. Huybrechts, “Compact hyperkähler manifolds: basic results”, Invent. Math., 135:1 (1999), 63–113 | DOI | MR | Zbl

[28] G. Bini, “On automorphisms of some K3 surfaces with Picard number two”, Annals of the Marie Curie Fellowship Association, 4 (2005), 1–3

[29] A. Garbagnati, A. Sarti, “Kummer surfaces and K3 surfaces with $(\mathbb{Z}/2\mathbb{Z})^4$ symplectic action”, Rocky Mountain J. Math., 46:4 (2016), 1141–1205 | DOI | MR | Zbl