Equivariant exceptional collections on smooth toric stacks
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 698-730.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the bounded derived categories of torus-equivariant coherent sheaves on smooth toric varieties and Deligne–Mumford stacks. We construct and describe full exceptional collections in these categories. We also observe that these categories depend only on the $\mathrm{PL}$-homeomorphism type of the corresponding simplicial complex.
Keywords: toric varieties and stacks, equivariant coherent sheaves, derived categories, simplicial complexes.
Mots-clés : exceptional collections
@article{IM2_2019_83_4_a3,
     author = {L. A. Borisov and D. O. Orlov},
     title = {Equivariant exceptional collections on smooth toric stacks},
     journal = {Izvestiya. Mathematics },
     pages = {698--730},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a3/}
}
TY  - JOUR
AU  - L. A. Borisov
AU  - D. O. Orlov
TI  - Equivariant exceptional collections on smooth toric stacks
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 698
EP  - 730
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a3/
LA  - en
ID  - IM2_2019_83_4_a3
ER  - 
%0 Journal Article
%A L. A. Borisov
%A D. O. Orlov
%T Equivariant exceptional collections on smooth toric stacks
%J Izvestiya. Mathematics 
%D 2019
%P 698-730
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a3/
%G en
%F IM2_2019_83_4_a3
L. A. Borisov; D. O. Orlov. Equivariant exceptional collections on smooth toric stacks. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 698-730. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a3/

[1] Y. Kawamata, “Derived categories of toric varieties”, Michigan Math. J., 54:3 (2006), 517–535 | DOI | MR | Zbl

[2] J. F. P. Hudson, Piecewise linear topology, Univ. of Chicago lecture notes, W. A. Benjamin, Inc., New York–Amsterdam, 1969, ix+282 pp. | MR | Zbl

[3] W. B. R. Lickorish, “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320 | DOI | MR | Zbl

[4] G. Barthel, L. Kaup, K.-H. Fieseler, “Introduction to basic toric geometry”, Singularities in geometry and topology, World Sci. Publ., Hackensack, NJ, 2007, 3–56 | MR | Zbl

[5] A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Astérisque, 100, Soc. Math. France, Paris, 1982 | MR | Zbl

[6] Yunfeng Jiang, “The orbifold cohomology ring of simplicial toric stack bundles”, Illinois J. Math., 52:2 (2008), 493–514 | DOI | MR | Zbl

[7] L. A. Borisov, L. Chen, G. G. Smith, “The orbifold Chow ring of toric Deligne–Mumford stacks”, J. Amer. Math. Soc., 18:1 (2005), 193–215 | DOI | MR | Zbl

[8] D. O. Orlov, “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41:1 (1993), 133–141 | DOI | MR | Zbl

[9] R. D. Edwards, Suspensions of homology spheres, arXiv: math/0610573

[10] A. I. Efimov, “Maximal lengths of exceptional collections of line bundles”, J. Lond. Math. Soc. (2), 90:2 (2014), 350–372 | DOI | MR | Zbl

[11] L. Hille, M. Perling, “A counterexample to King's conjecture”, Compos. Math., 142:6 (2006), 1507–1521 | DOI | MR | Zbl

[12] L. Borisov, Zheng Hua, “On the conjecture of King for smooth toric Deligne–Mumford stacks”, Adv. Math., 221:1 (2009), 277–301 | DOI | MR | Zbl

[13] A. A. Beilinson, V. A. Ginsburg, V. V. Schechtman, “Koszul duality”, J. Geom. Phys., 5:3 (1988), 317–350 | DOI | MR | Zbl

[14] A. Neeman, “The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel”, Ann. Sci. École Norm. Sup. (4), 25:5 (1992), 547–566 | DOI | MR | Zbl