Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_4_a2, author = {V. V. Batyrev and K. Schaller}, title = {Stringy $E$-functions of canonical toric {Fano} threefolds and their applications}, journal = {Izvestiya. Mathematics }, pages = {676--697}, publisher = {mathdoc}, volume = {83}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/} }
TY - JOUR AU - V. V. Batyrev AU - K. Schaller TI - Stringy $E$-functions of canonical toric Fano threefolds and their applications JO - Izvestiya. Mathematics PY - 2019 SP - 676 EP - 697 VL - 83 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/ LA - en ID - IM2_2019_83_4_a2 ER -
V. V. Batyrev; K. Schaller. Stringy $E$-functions of canonical toric Fano threefolds and their applications. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 676-697. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/
[1] M. Reid, “Minimal models of canonical {$3$}-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180 | DOI | MR | Zbl
[2] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl
[3] A. M. Kasprzyk, “Canonical toric Fano threefolds”, Canad. J. Math., 62:6 (2010), 1293–1309 | DOI | MR | Zbl
[4] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535 | MR | Zbl
[5] M. Kreuzer, H. Skarke, “Classification of reflexive polyhedra in three dimensions”, Adv. Theor. Math. Phys., 2:4 (1998), 853–871 | DOI | MR | Zbl
[6] M. Beck, Beifang Chen, L. Fukshansky, C. Haase, A. Knutson, B. Reznick, S. Robins, A. Schürmann, “Problems from the Cottonwood Room”, Integer points in polyhedra – geometry, number theory, algebra, optimization, Contemp. Math., 374, Amer. Math. Soc., Providence, RI, 2005, 179–191 | DOI | MR | Zbl
[7] V. V. Batyrev, D. I. Dais, “Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35:4 (1996), 901–929 | DOI | MR | Zbl
[8] A. G. Khovanskii, “Newton polyhedra and the genus of complete intersections”, Funct. Anal. Appl., 12:1 (1978), 38–46 | DOI | MR | Zbl
[9] V. Batyrev, “The stringy Euler number of Calabi–Yau hypersurfaces in toric varieties and the Mavlyutov duality”, Pure Appl. Math. Q., 13:1 (2017), 1–47 | DOI | MR | Zbl
[10] V. Batyrev, K. Schaller, “Stringy Chern classes of singular toric varieties and their applications”, Commun. Number Theory Phys., 11:1 (2017), 1–40 | DOI | MR | Zbl
[11] L. Dixon, J. A. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nuclear Phys. B, 261 (1985), 678–686 | DOI | MR
[12] V. V. Batyrev, “Stringy Hodge numbers of varieties with Gorenstein canonical singularities”, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 1–32 | MR | Zbl
[13] H. Skarke, “Weight systems for toric Calabi–Yau varieties and reflexivity of Newton polyhedra”, Modern Phys. Lett. A, 11:20 (1996), 1637–1652 | DOI | MR | Zbl
[14] A. M. Kasprzyk, M. Kreuzer, B. Nill, “On the combinatorial classification of toric log del Pezzo surfaces”, LMS J. Comput. Math., 13 (2010), 33–46 | DOI | MR | Zbl
[15] G. K. White, “Lattice tetrahedra”, Canad. J. Math., 16 (1964), 389–396 | DOI | MR | Zbl
[16] A. Corti, V. Golyshev, “Hypergeometric equations and weighted projective spaces”, Sci. China Math., 54:8 (2011), 1577–1590 | DOI | MR | Zbl
[17] A. S. Libgober, J. W. Wood, “Uniqueness of the complex structure on Kähler manifolds of certain homotopy types”, J. Differential Geom., 32:1 (1990), 139–154 | DOI | MR | Zbl
[18] V. V. Batyrev, “Stringy Hodge numbers and Virasoro algebra”, Math. Res. Lett., 7:2 (2000), 155–164 | DOI | MR | Zbl