Stringy $E$-functions of canonical toric Fano threefolds and their applications
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 676-697.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Delta$ be a $3$-dimensional lattice polytope containing exactly one interior lattice point. We give a simple combinatorial formula for computing the stringy $E$-function of the $3$-dimensional canonical toric Fano variety $X_{\Delta}$ associated with $\Delta$. Using the stringy Libgober–Wood identity and our formula, we generalize the well-known combinatorial identity $\sum_{\substack{\theta \preceq \Delta\\ \dim (\theta) =1}}v(\theta) \cdot v(\theta^*) = 24$ which holds for $3$-dimensional reflexive polytopes $\Delta$.
Keywords: Fano varieties, $K3$-surfaces, lattice polytopes, toric varieties.
@article{IM2_2019_83_4_a2,
     author = {V. V. Batyrev and K. Schaller},
     title = {Stringy $E$-functions of canonical toric {Fano} threefolds and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {676--697},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/}
}
TY  - JOUR
AU  - V. V. Batyrev
AU  - K. Schaller
TI  - Stringy $E$-functions of canonical toric Fano threefolds and their applications
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 676
EP  - 697
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/
LA  - en
ID  - IM2_2019_83_4_a2
ER  - 
%0 Journal Article
%A V. V. Batyrev
%A K. Schaller
%T Stringy $E$-functions of canonical toric Fano threefolds and their applications
%J Izvestiya. Mathematics 
%D 2019
%P 676-697
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/
%G en
%F IM2_2019_83_4_a2
V. V. Batyrev; K. Schaller. Stringy $E$-functions of canonical toric Fano threefolds and their applications. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 676-697. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/

[1] M. Reid, “Minimal models of canonical {$3$}-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180 | DOI | MR | Zbl

[2] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[3] A. M. Kasprzyk, “Canonical toric Fano threefolds”, Canad. J. Math., 62:6 (2010), 1293–1309 | DOI | MR | Zbl

[4] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535 | MR | Zbl

[5] M. Kreuzer, H. Skarke, “Classification of reflexive polyhedra in three dimensions”, Adv. Theor. Math. Phys., 2:4 (1998), 853–871 | DOI | MR | Zbl

[6] M. Beck, Beifang Chen, L. Fukshansky, C. Haase, A. Knutson, B. Reznick, S. Robins, A. Schürmann, “Problems from the Cottonwood Room”, Integer points in polyhedra – geometry, number theory, algebra, optimization, Contemp. Math., 374, Amer. Math. Soc., Providence, RI, 2005, 179–191 | DOI | MR | Zbl

[7] V. V. Batyrev, D. I. Dais, “Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35:4 (1996), 901–929 | DOI | MR | Zbl

[8] A. G. Khovanskii, “Newton polyhedra and the genus of complete intersections”, Funct. Anal. Appl., 12:1 (1978), 38–46 | DOI | MR | Zbl

[9] V. Batyrev, “The stringy Euler number of Calabi–Yau hypersurfaces in toric varieties and the Mavlyutov duality”, Pure Appl. Math. Q., 13:1 (2017), 1–47 | DOI | MR | Zbl

[10] V. Batyrev, K. Schaller, “Stringy Chern classes of singular toric varieties and their applications”, Commun. Number Theory Phys., 11:1 (2017), 1–40 | DOI | MR | Zbl

[11] L. Dixon, J. A. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nuclear Phys. B, 261 (1985), 678–686 | DOI | MR

[12] V. V. Batyrev, “Stringy Hodge numbers of varieties with Gorenstein canonical singularities”, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 1–32 | MR | Zbl

[13] H. Skarke, “Weight systems for toric Calabi–Yau varieties and reflexivity of Newton polyhedra”, Modern Phys. Lett. A, 11:20 (1996), 1637–1652 | DOI | MR | Zbl

[14] A. M. Kasprzyk, M. Kreuzer, B. Nill, “On the combinatorial classification of toric log del Pezzo surfaces”, LMS J. Comput. Math., 13 (2010), 33–46 | DOI | MR | Zbl

[15] G. K. White, “Lattice tetrahedra”, Canad. J. Math., 16 (1964), 389–396 | DOI | MR | Zbl

[16] A. Corti, V. Golyshev, “Hypergeometric equations and weighted projective spaces”, Sci. China Math., 54:8 (2011), 1577–1590 | DOI | MR | Zbl

[17] A. S. Libgober, J. W. Wood, “Uniqueness of the complex structure on Kähler manifolds of certain homotopy types”, J. Differential Geom., 32:1 (1990), 139–154 | DOI | MR | Zbl

[18] V. V. Batyrev, “Stringy Hodge numbers and Virasoro algebra”, Math. Res. Lett., 7:2 (2000), 155–164 | DOI | MR | Zbl