Stringy $E$-functions of canonical toric Fano threefolds and their applications
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 676-697

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Delta$ be a $3$-dimensional lattice polytope containing exactly one interior lattice point. We give a simple combinatorial formula for computing the stringy $E$-function of the $3$-dimensional canonical toric Fano variety $X_{\Delta}$ associated with $\Delta$. Using the stringy Libgober–Wood identity and our formula, we generalize the well-known combinatorial identity $\sum_{\substack{\theta \preceq \Delta\\ \dim (\theta) =1}}v(\theta) \cdot v(\theta^*) = 24$ which holds for $3$-dimensional reflexive polytopes $\Delta$.
Keywords: Fano varieties, $K3$-surfaces, lattice polytopes, toric varieties.
@article{IM2_2019_83_4_a2,
     author = {V. V. Batyrev and K. Schaller},
     title = {Stringy $E$-functions of canonical toric {Fano} threefolds and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {676--697},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/}
}
TY  - JOUR
AU  - V. V. Batyrev
AU  - K. Schaller
TI  - Stringy $E$-functions of canonical toric Fano threefolds and their applications
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 676
EP  - 697
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/
LA  - en
ID  - IM2_2019_83_4_a2
ER  - 
%0 Journal Article
%A V. V. Batyrev
%A K. Schaller
%T Stringy $E$-functions of canonical toric Fano threefolds and their applications
%J Izvestiya. Mathematics 
%D 2019
%P 676-697
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/
%G en
%F IM2_2019_83_4_a2
V. V. Batyrev; K. Schaller. Stringy $E$-functions of canonical toric Fano threefolds and their applications. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 676-697. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a2/