Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_4_a1, author = {V. A. Alexeev and W. Liu}, title = {On accumulation points of volumes of log surfaces}, journal = {Izvestiya. Mathematics }, pages = {657--675}, publisher = {mathdoc}, volume = {83}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a1/} }
V. A. Alexeev; W. Liu. On accumulation points of volumes of log surfaces. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 657-675. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a1/
[1] V. Alexeev, “Boundedness and $K^2$ for log surfaces”, Internat. J. Math., 5:6 (1994), 779–810 | DOI | MR | Zbl
[2] R. Blache, “An example concerning Alexeev's boundedness results on log surfaces”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 65–69 | DOI | MR | Zbl
[3] J. Kollár, “Is there a topological Bogomolov–Miyaoka–Yau inequality?”, Pure Appl. Math. Q., 4:2, Special issue: In honor of F. Bogomolov. Part 1 (2008), 203–236 | DOI | MR | Zbl
[4] G. Urzúa, J. I. Yáñez, Notes on accumulation points of $K^2$, Preprint, 2017
[5] V. Alexeev, W. Liu, “Open surfaces of small volume”, Algebr. Geom. (to appear); 2016, arXiv: 1612.09116
[6] J. Kollár, “Log surfaces of general type; some conjectures”, Classification of algebraic varieties (L'Aquila, 1992), Contemp. Math., 162, Amer. Math. Soc., Providence, RI, 1994, 261–275 | DOI | MR | Zbl
[7] V. Alexeev, S. Mori, “Bounding singular surfaces of general type”, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, 143–174 | MR | Zbl
[8] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl
[9] O. Fujino, “Fundamental theorems for the log minimal model program”, Publ. Res. Inst. Math. Sci., 47:3 (2011), 727–789 | DOI | MR | Zbl
[10] M. Artin, “Some numerical criteria for contractability of curves on algebraic surfaces”, Amer. J. Math., 84:3 (1962), 485–496 | DOI | MR | Zbl
[11] V. Alexeev, “Classification of log canonical surface singularities: arithmetical approach”, Flips and abundance for algebraic threefolds (Univ. of Utah, Salt Lake City, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992, 47–58 | MR | Zbl
[12] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR | Zbl
[13] Wenfei Liu, The minimal volume of log surfaces of general type with positive geometric genus, 2017, arXiv: 1706.03716
[14] R. Blache, “Riemann–Roch theorem for normal surfaces and applications”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 307–340 | DOI | MR | Zbl