On accumulation points of volumes of log surfaces
Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 657-675

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{C} \subset [0,1]$ be a set satisfying the descending chain condition. We show that every accumulation point of volumes of log canonical surfaces $(X, B)$ with coefficients in $ \mathcal{C} $ can be realized as the volume of a log canonical surface with big and nef $K_X+B$ and with coefficients in $\overline{\mathcal{C}} \cup \{1 \}$ in such a way that at least one coefficient lies in $\operatorname{Acc} (\mathcal{C}) \cup \{1 \}$. As a corollary, if $\overline {\mathcal{C}} \subset \mathbb{Q}$, then all accumulation points of volumes are rational numbers. This proves a conjecture of Blache. For the set of standard coefficients $\mathcal{C}_2=\{1-1/{n} \mid n\in\mathbb{N} \} \cup \{1 \}$ we prove that the minimal accumulation point is between $1/{(7^2 \cdot 42^2)}$ and $1/{42^2}$.
Keywords: log canonical surfaces
Mots-clés : volume, accumulation points.
@article{IM2_2019_83_4_a1,
     author = {V. A. Alexeev and W. Liu},
     title = {On accumulation points of volumes of log surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {657--675},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a1/}
}
TY  - JOUR
AU  - V. A. Alexeev
AU  - W. Liu
TI  - On accumulation points of volumes of log surfaces
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 657
EP  - 675
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a1/
LA  - en
ID  - IM2_2019_83_4_a1
ER  - 
%0 Journal Article
%A V. A. Alexeev
%A W. Liu
%T On accumulation points of volumes of log surfaces
%J Izvestiya. Mathematics 
%D 2019
%P 657-675
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a1/
%G en
%F IM2_2019_83_4_a1
V. A. Alexeev; W. Liu. On accumulation points of volumes of log surfaces. Izvestiya. Mathematics , Tome 83 (2019) no. 4, pp. 657-675. http://geodesic.mathdoc.fr/item/IM2_2019_83_4_a1/