On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 613-653

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operator ${}^{\mathrm{c}}\Lambda$ of Hodge theory is true for the fibre product $X=X_1\times_CX_2\times_CX_3$ of complex elliptic surfaces $X_k\to C$ over a smooth projective curve $C$ provided that the discriminant loci $\{\delta\in C\mid \operatorname{Sing}(X_{k\delta})\neq \varnothing\}$ $(k=1,2,3)$ are pairwise disjoint.
Keywords: standard conjecture, resolution of indeterminacies, Clemens–Schmid sequence
Mots-clés : elliptic surface, fibre product, Gysin map.
@article{IM2_2019_83_3_a8,
     author = {S. G. Tankeev},
     title = {On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci},
     journal = {Izvestiya. Mathematics },
     pages = {613--653},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 613
EP  - 653
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/
LA  - en
ID  - IM2_2019_83_3_a8
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci
%J Izvestiya. Mathematics 
%D 2019
%P 613-653
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/
%G en
%F IM2_2019_83_3_a8
S. G. Tankeev. On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 613-653. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/