On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 613-653.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operator ${}^{\mathrm{c}}\Lambda$ of Hodge theory is true for the fibre product $X=X_1\times_CX_2\times_CX_3$ of complex elliptic surfaces $X_k\to C$ over a smooth projective curve $C$ provided that the discriminant loci $\{\delta\in C\mid \operatorname{Sing}(X_{k\delta})\neq \varnothing\}$ $(k=1,2,3)$ are pairwise disjoint.
Keywords: standard conjecture, resolution of indeterminacies, Clemens–Schmid sequence
Mots-clés : elliptic surface, fibre product, Gysin map.
@article{IM2_2019_83_3_a8,
     author = {S. G. Tankeev},
     title = {On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci},
     journal = {Izvestiya. Mathematics },
     pages = {613--653},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 613
EP  - 653
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/
LA  - en
ID  - IM2_2019_83_3_a8
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci
%J Izvestiya. Mathematics 
%D 2019
%P 613-653
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/
%G en
%F IM2_2019_83_3_a8
S. G. Tankeev. On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 613-653. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. colloq. (Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl

[2] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 359–386 | MR | Zbl

[3] S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI | DOI | MR | Zbl

[4] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[5] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | DOI | MR | Zbl

[6] F. Charles, E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl

[7] O. V. Nikol'skaya, “On algebraic cycles on a fibre product of families of $K3$-surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | DOI | MR | Zbl

[8] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Friedr. Vieweg Sohn, Braunschweig, 1997, xiv+269 pp. ; Cambridge Math. Lib., 2nd ed., Cambridge, Cambridge Univ. Press, 2010, xviii+325 pp. | MR | Zbl | DOI | MR | Zbl

[9] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl

[10] S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207 | DOI | DOI | MR | Zbl

[11] S. G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. Math., 81:6 (2017), 1253–1285 | DOI | DOI | MR | Zbl

[12] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp. | DOI | MR | Zbl

[13] K. Kodaira, “On compact analytic surfaces. II”, Ann. of Math. (2), 77:3 (1963), 563–626 | DOI | MR | Zbl

[14] P. Deligne, D. Mumford, “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36:1 (1969), 75–109 | DOI | MR | Zbl | Zbl

[15] R. Miranda, The basic theory of elliptic surfaces, Notes of lectures, Dottorato Ric. Mat., ETS Editrice, Pisa, 1989, vi+108 pp. | MR | Zbl

[16] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl

[17] G. A. Mustafin, “Families of algebraic varieties and invariant cycles”, Math. USSR-Izv., 27:2 (1986), 251–278 | DOI | MR | Zbl

[18] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl | Zbl

[19] Yu. G. Zarhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl

[20] B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”: J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, 314–373 | MR | Zbl

[21] N. Burbaki, Gruppy i algebry Li, gl. 1–3, Elementy matematiki, Mir, M., 1976, 496 pp. ; гл. 4–6, 1972, 334 с. ; гл. 7, 8, 1978, 342 с. ; N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Ch. 1, Actualités Sci. Indust., 1285, 2nd éd., Hermann, Paris, 1971, 146 pp. ; Ch. 2, 3, 1349, 1972, 320 pp. ; Ch. 4–6, 1337, 1968, 288 pp. ; Ch. 7, 8, 1364, 1975, 271 pp. | MR | MR | Zbl | MR | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[22] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[23] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 167–187 | DOI | DOI | MR | Zbl

[24] R. Godement, Topologie algébrique et théorie des faisceaux, Actualit'es Sci. Ind., 1252, Publ. Math. Univ. Strasbourg, No. 13, Hermann, Paris, 1958, viii+283 pp. | MR | MR | Zbl | Zbl

[25] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, N.J., 1980, xiii+323 pp. | MR | MR | Zbl | Zbl

[26] G. E. Bredon, Teoriya puchkov, Nauka, M., 1988, 312 pp. ; G. E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York–Toronto, ON–London, 1967, xi+272 с. ; Grad. Texts in Math., 170, 2nd ed., Springer-Verlag, New York, 1997, xii+502 pp. | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[27] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973, x+252 pp. | MR | MR | Zbl

[28] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[29] W. Schmid, “Variation of Hodge structure: the singularities of the period mapping”, Invent. Math., 22:3-4 (1973), 211–319 | DOI | MR | Zbl

[30] N. Burbaki, Algebra. Algebraicheskie struktury. Lineinaya i polilineinaya algebra, Elementy matematiki, Fizmatgiz, M., 1962, 516 pp. ; N. Bourbaki, Éléments de mathématique. Part I. Les structures fondamentales de l'analyse. Livre II. Algèbre, Ch. I, Actualités Sci. Ind., 934, Hermann, Paris, 1942, iv+165 pp. ; Ch. II, 1032, 1947, ii+132+4 pp. ; Ch. III, 1044, 1948, ii+157+ii pp. | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[31] Vik. S. Kulikov, P. F. Kurchanov, “Complex algebraic varieties: periods of integrals and Hodge structures”, Algebraic geometry III, Encyclopaedia Math. Sci., 36, Springer, Berlin, 1998, 1–217 | DOI | MR | MR | Zbl

[32] J.-P. Serre, Abelian $l$-adic representations and elliptic curves, McGill Univ. lecture notes written with the collaboration of W. Kuyk, J. Labute, W. A. Benjamin, Inc., New York–Amsterdam, 1968, xvi+177 pp. | MR | Zbl | Zbl

[33] N. Bourbaki, Éléments de mathématique. Algèbre. Ch. 10. Algèbre homologique, Masson, Paris, 1980, vii+216 pp. | MR | MR | Zbl | Zbl

[34] T. Shioda, “On the Mordell–Weil lattices”, Comment. Math. Univ. St. Paul., 39:2 (1990), 211–240 | MR | Zbl

[35] M. Schütt, T. Shioda, “Elliptic surfaces”, Algebraic geometry in East Asia – Seoul 2008, Adv. Stud. Pure Math., 60, Math. Soc. Japan, Tokyo, 2010, 51–160 | MR | Zbl

[36] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Stud., 59, Princeton Univ. Press, Princeton, NJ, 1966, xi+200 pp. | MR | Zbl | Zbl

[37] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | MR | MR | Zbl | Zbl

[38] C. Voisin, Hodge theory and complex algebraic geometry, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002, x+322 pp. | MR | Zbl

[39] W. Fulton, Equivariant cohomology in algebraic geometry. Appendix A. Algebraic topology, Eilenberg lectures, notes by D. Anderson (Columbia Univ., 2007), 2007, 13 pp. http://w3.impa.br/~dave/eilenberg

[40] A. N. Paršin, “Minimal models of curves of genus 2 and homomorphisms of Abelian varieties defined over a field of finite characteristic”, Math. USSR-Izv., 6:1 (1972), 65–108 | DOI | MR | Zbl

[41] Yu. I. Manin, M. Hazewinkel, Cubic forms: algebra, geometry, arithmetic, North-Holland Math. Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974, vii+292 pp. | MR | MR | Zbl | Zbl

[42] J. Harris, Algebraic geometry. A first course, Grad. Texts in Math., 133, Springer-Verlag, New York, 1992, xx+328 pp. | DOI | MR | Zbl