On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 613-653
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type
on the algebraicity of the operator ${}^{\mathrm{c}}\Lambda$ of Hodge theory
is true for the fibre product $X=X_1\times_CX_2\times_CX_3$ of complex elliptic
surfaces $X_k\to C$ over a smooth projective curve $C$ provided that the
discriminant loci $\{\delta\in C\mid \operatorname{Sing}(X_{k\delta})\neq
\varnothing\}$ $(k=1,2,3)$ are pairwise disjoint.
Keywords:
standard conjecture, resolution of indeterminacies, Clemens–Schmid sequence
Mots-clés : elliptic surface, fibre product, Gysin map.
Mots-clés : elliptic surface, fibre product, Gysin map.
@article{IM2_2019_83_3_a8,
author = {S. G. Tankeev},
title = {On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci},
journal = {Izvestiya. Mathematics },
pages = {613--653},
publisher = {mathdoc},
volume = {83},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/}
}
TY - JOUR AU - S. G. Tankeev TI - On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci JO - Izvestiya. Mathematics PY - 2019 SP - 613 EP - 653 VL - 83 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/ LA - en ID - IM2_2019_83_3_a8 ER -
S. G. Tankeev. On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 613-653. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a8/