Threefold extremal curve germs with one non-Gorenstein point
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 565-612.

Voir la notice de l'article provenant de la source Math-Net.Ru

An extremal curve germ is the analytic germ of a threefold with terminal singularities along a reduced complete curve admitting a contraction whose fibres have dimension at most one. The aim of the present paper is to review the results concerning contractions whose central fibre is irreducible and contains only one non-Gorenstein point.
Keywords: extremal curve germ, terminal singularity, canonical divisor, blow-up, flip, $Q$-conic bundle.
Mots-clés : birational map
@article{IM2_2019_83_3_a7,
     author = {Sh. Mori and Yu. G. Prokhorov},
     title = {Threefold extremal curve germs with one {non-Gorenstein} point},
     journal = {Izvestiya. Mathematics },
     pages = {565--612},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/}
}
TY  - JOUR
AU  - Sh. Mori
AU  - Yu. G. Prokhorov
TI  - Threefold extremal curve germs with one non-Gorenstein point
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 565
EP  - 612
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/
LA  - en
ID  - IM2_2019_83_3_a7
ER  - 
%0 Journal Article
%A Sh. Mori
%A Yu. G. Prokhorov
%T Threefold extremal curve germs with one non-Gorenstein point
%J Izvestiya. Mathematics 
%D 2019
%P 565-612
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/
%G en
%F IM2_2019_83_3_a7
Sh. Mori; Yu. G. Prokhorov. Threefold extremal curve germs with one non-Gorenstein point. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 565-612. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/

[1] H. Clemens, J. Kollár, S. Mori, Higher-dimensional complex geometry (Salt Lake City, 1987), Astérisque, 166, Soc. Math. France, Paris, 1988, 144 pp. | MR | Zbl

[2] S. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[3] J. Kollár, S. Mori, “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl

[4] S. Mori, “On semistable extremal neighborhoods”, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002, 157–184 | DOI | MR | Zbl

[5] P. Hacking, J. Tevelev, G. Urzúa, “Flipping surfaces”, J. Algebraic Geom., 26:2 (2017), 279–345 | DOI | MR | Zbl

[6] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369 | DOI | MR | Zbl

[7] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles. III”, Publ. Res. Inst. Math. Sci., 45:3 (2009), 787–810 | DOI | MR | Zbl

[8] M. Reid, “Minimal models of canonical $3$-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180 | DOI | MR | Zbl

[9] S. Mori, “On $3$-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | DOI | MR | Zbl

[10] M. Reid, “Young person's guide to canonical singularities”, Algebraic geometry – Bowdoin 1985, Part 1 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414 | DOI | MR | Zbl

[11] J. Kollár, N. I. Shepherd-Barron, “Threefolds and deformations of surface singularities”, Invent. Math., 91:2 (1988), 299–338 | DOI | MR | Zbl

[12] Y. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR | Zbl

[13] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens, A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl

[14] S. Cutkosky, “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280:3 (1988), 521–525 | DOI | MR | Zbl

[15] N. Tziolas, “Terminal 3-fold divisorial contractions of a surface to a curve. I”, Compositio Math., 139:3 (2003), 239–261 | DOI | MR | Zbl

[16] N. Tziolas, “Families of $D$-minimal models and applications to 3-fold divisorial contractions”, Proc. London Math. Soc. (3), 90:2 (2005), 345–370 | DOI | MR | Zbl

[17] Y. Kawamata, “Divisorial contractions to $3$-dimensional terminal quotient singularities”, Higher dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, 241–246 | MR | Zbl

[18] N. Tziolas, “Three-fold divisorial extremal neighborhoods over $cE_7$ and $c6$ compound DuVal singularities”, Internat. J. Math., 21:1 (2010), 1–23 | DOI | MR | Zbl

[19] Yu. Prokhorov, M. Reid, “On $\mathbb Q$-Fano 3-folds of Fano index 2”, Minimal models and extremal rays (Kyoto, 2011), Adv. Stud. Pure Math., 70, Math. Soc. Japan, Tokyo, 2016, 397–420 | DOI | MR | Zbl

[20] T. Ducat, “Divisorial extractions from singular curves in smooth 3-folds”, Internat. J. Math., 27:1 (2016), 1650005, 23 pp. | DOI | MR | Zbl

[21] S. Mori, Yu. Prokhorov, “Threefold extremal contractions of type (IA)”, Kyoto J. Math., 51:2 (2011), 393–438 | DOI | MR | Zbl

[22] J. Kollár, “Higher direct images of dualizing sheaves. I”, Ann. of Math. (2), 123:1 (1986), 11–42 | DOI | MR | Zbl

[23] J. Kollár, “Real algebraic threefolds. III. Conic bundles”, J. Math. Sci. (N.Y.), 94:1 (1999), 996–1020 | DOI | MR | Zbl

[24] Yu. G. Prokhorov, “On the existence of complements of the canonical divisor for Mori conic bundles”, Sb. Math., 188:11 (1997), 1665–1685 | DOI | DOI | MR | Zbl

[25] R. D. Feuer, “Torsion-free subgroups of triangle groups”, Proc. Amer. Math. Soc., 30:2 (1971), 235–240 | DOI | MR | Zbl

[26] S. Ishii, Introduction to singularities, Springer, Tokyo, 2014, viii+223 pp. | DOI | MR | Zbl

[27] Y. Kawamata, “The minimal discrepancy coefficients of terminal singularities in dimension 3”, Appendix v st. V. V. Shokurova ‘Trekhmernye logperestroiki’, Izv. RAN. Ser. matem., 56:1 (1992), 201–203 ; Appendix to V. V. Shokurov's paper ‘3-fold log flips’, Russian Acad. Sci. Izv. Math., 40:1 (1993), 193–195 | MR | Zbl | DOI

[28] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR | Zbl

[29] Flips and abundance for algebraic threefolds (Univ. of Utah, Salt Lake City, 1991), Astérisque, 211, ed. J. Kollár, Soc. Math. France, Paris, 1992, 258 pp. | MR | Zbl

[30] V. A. Iskovskikh, “A rationality criterion for conic bundles”, Sb. Math., 187:7 (1996), 1021–1038 | DOI | DOI | MR | Zbl

[31] Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456 | DOI | DOI | MR | Zbl

[32] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles. II”, Publ. Res. Inst. Math. Sci., 44:3 (2008), 955–971 | DOI | MR | Zbl

[33] S. Mori, “On a generalization of complete intersections”, J. Math. Kyoto Univ., 15:3 (1975), 619–646 | DOI | MR | Zbl

[34] E. Looijenga, J. Wahl, “Quadratic functions and smoothing surface singularities”, Topology, 25:3 (1986), 261–291 | DOI | MR | Zbl

[35] M. Kawakita, “Inversion of adjunction on log canonicity”, Invent. Math., 167:1 (2007), 129–133 | DOI | MR | Zbl

[36] Y. Kawamata, “On Fujita's freeness conjecture for $3$-folds and $4$-folds”, Math. Ann., 308:3 (1997), 491–505 | DOI | MR | Zbl

[37] Yu. G. Prokhorov, “On semistable Mori contractions”, Izv. Math., 68:2 (2004), 365–374 | DOI | DOI | MR | Zbl

[38] S. Mori, Yu. Prokhorov, “3-fold extremal contractions of types (IC) and (IIB)”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 231–252 | DOI | MR | Zbl

[39] N. Tziolas, “Three dimensional divisorial extremal neighborhoods”, Math. Ann., 333:2 (2005), 315–354 | DOI | MR | Zbl

[40] N. I. Shepherd-Barron, “Degenerations with numerically effective canonical divisor”, The birational geometry of degenerations (Cambridge, MA, 1981), Progr. Math., 29, Birkhäuser Boston, Boston, MA, 1983, 33–84 | MR | Zbl

[41] N. Tziolas, “$\mathbb Q$-Gorenstein deformations of nonnormal surfaces”, Amer. J. Math., 131:1 (2009), 171–193 | DOI | MR | Zbl

[42] S. Mori, Yu. G. Prokhorov, “Threefold extremal contractions of type (IIA). I”, Izv. RAN. Ser. matem., 80:5 (2016), 77–102 | DOI | MR | Zbl

[43] S. Mori, Yu. Prokhorov, “Threefold extremal contractions of type (IIA). II”, Geometry and physics, v. 2, A festschrift in honour of N. Hitchin, Oxford Univ. Press, Oxford, 2018, 623–652 | DOI