Threefold extremal curve germs with one non-Gorenstein point
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 565-612

Voir la notice de l'article provenant de la source Math-Net.Ru

An extremal curve germ is the analytic germ of a threefold with terminal singularities along a reduced complete curve admitting a contraction whose fibres have dimension at most one. The aim of the present paper is to review the results concerning contractions whose central fibre is irreducible and contains only one non-Gorenstein point.
Keywords: extremal curve germ, terminal singularity, canonical divisor, blow-up, flip, $Q$-conic bundle.
Mots-clés : birational map
@article{IM2_2019_83_3_a7,
     author = {Sh. Mori and Yu. G. Prokhorov},
     title = {Threefold extremal curve germs with one {non-Gorenstein} point},
     journal = {Izvestiya. Mathematics },
     pages = {565--612},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/}
}
TY  - JOUR
AU  - Sh. Mori
AU  - Yu. G. Prokhorov
TI  - Threefold extremal curve germs with one non-Gorenstein point
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 565
EP  - 612
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/
LA  - en
ID  - IM2_2019_83_3_a7
ER  - 
%0 Journal Article
%A Sh. Mori
%A Yu. G. Prokhorov
%T Threefold extremal curve germs with one non-Gorenstein point
%J Izvestiya. Mathematics 
%D 2019
%P 565-612
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/
%G en
%F IM2_2019_83_3_a7
Sh. Mori; Yu. G. Prokhorov. Threefold extremal curve germs with one non-Gorenstein point. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 565-612. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/