Threefold extremal curve germs with one non-Gorenstein point
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 565-612
Voir la notice de l'article provenant de la source Math-Net.Ru
An extremal curve germ is the analytic germ of a threefold with terminal
singularities along a reduced complete curve admitting a contraction whose
fibres have dimension at most one. The aim of the present paper is to review
the results concerning contractions whose central fibre is irreducible and
contains only one non-Gorenstein point.
Keywords:
extremal curve germ, terminal singularity, canonical divisor, blow-up, flip, $Q$-conic bundle.
Mots-clés : birational map
Mots-clés : birational map
@article{IM2_2019_83_3_a7,
author = {Sh. Mori and Yu. G. Prokhorov},
title = {Threefold extremal curve germs with one {non-Gorenstein} point},
journal = {Izvestiya. Mathematics },
pages = {565--612},
publisher = {mathdoc},
volume = {83},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/}
}
Sh. Mori; Yu. G. Prokhorov. Threefold extremal curve germs with one non-Gorenstein point. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 565-612. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a7/