Asymptotic bounds for spherical codes
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 540-564.

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of all error-correcting codes $C$ over a fixed finite alphabet $\mathbf{F}$ of cardinality $q$ determines the set of code points in the unit square $[0,1]^2$ with coordinates $(R(C), \delta (C))$:= (relative transmission rate, relative minimal distance). The central problem of the theory of such codes consists in maximising simultaneously the transmission rate of the code and the relative minimum Hamming distance between two different code words. The classical approach to this problem explored in vast literature consists in inventing explicit constructions of “good codes” and comparing new classes of codes with earlier ones. A less classical approach studies the geometry of the whole set of code points $(R,\delta)$ (with $q$ fixed), at first independently of its computability properties, and only afterwards turning to problems of computability, analogies with statistical physics, and so on. The main purpose of this article consists in extending this latter strategy to the domain of spherical codes.
Keywords: error-correcting codes, spherical codes, asymptotic bounds.
@article{IM2_2019_83_3_a6,
     author = {Yu. I. Manin and M. Marcolli},
     title = {Asymptotic bounds for spherical codes},
     journal = {Izvestiya. Mathematics },
     pages = {540--564},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a6/}
}
TY  - JOUR
AU  - Yu. I. Manin
AU  - M. Marcolli
TI  - Asymptotic bounds for spherical codes
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 540
EP  - 564
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a6/
LA  - en
ID  - IM2_2019_83_3_a6
ER  - 
%0 Journal Article
%A Yu. I. Manin
%A M. Marcolli
%T Asymptotic bounds for spherical codes
%J Izvestiya. Mathematics 
%D 2019
%P 540-564
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a6/
%G en
%F IM2_2019_83_3_a6
Yu. I. Manin; M. Marcolli. Asymptotic bounds for spherical codes. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 540-564. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a6/

[1] M. Tsfasman, S. Vlăduţ, D. Nogin, Algebraic geometric codes: basic notions, Math. Surveys Monogr., 139, Amer. Math. Soc., Providence, RI, 2007, xx+338 pp. | DOI | MR | Zbl

[2] Yu. I. Manin, M. Marcolli, “Error-correcting codes and phase transitions”, Math. Comput. Sci., 5:2 (2011), 133–170 | DOI | MR | Zbl

[3] Yu. I. Manin, “A computability challenge: asymptotic bounds for error-correcting codes”, Computation, physics and beyond, Lecture Notes in Comput. Sci., 7160, Springer, Heidelberg, 2012, 174–182 | DOI | MR | Zbl

[4] G. A. Kabatjanskiĭ, V. I. Levenšteĭn, “Bounds for packings on a sphere and in space”, Problems Inform. Transmission, 14:1 (1978), 1–17 | MR | Zbl

[5] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, 3rd ed., Springer-Verlag, New York, 1999, lxxiv+703 pp. | DOI | MR | MR | MR | Zbl

[6] H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, M. Viazovska, “The sphere packing problem in dimension 24”, Ann. of Math. (2), 185:3 (2017), 1017–1033 ; arXiv: 1603.06518 | DOI | MR | Zbl

[7] M. S. Viazovska, “The sphere packing problem in dimension $8$”, Ann. of Math. (2), 185:3 (2017), 991–1015 ; arXiv: 1603.04246 | DOI | MR | Zbl

[8] H. Cohn, N. Elkies, “New upper bounds on sphere packings. I”, Ann. of Math. (2), 157:2 (2003), 689–714 | DOI | MR | Zbl

[9] Yu. I. Manin, M. Marcolli, “Kolmogorov complexity and the asymptotic bound for error-correcting codes”, J. Differential Geom., 97:1 (2014), 91–108 | DOI | MR | Zbl

[10] R. A. Rankin, “The closest packing of spherical caps in $n$ dimensions”, Proc. Glasgow Math. Assoc., 2:3 (1955), 139–144 | DOI | MR | Zbl

[11] Yu. I. Manin, “What is the maximum number of points on a curve over $\mathbf{F}_2$?”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 715–720 | MR | Zbl

[12] H. Cohn, Yang Jiao, A. Kumar, S. Torquato, “Rigidity of spherical codes”, Geom. Topol., 15:4 (2011), 2235–2273 | DOI | MR | Zbl

[13] H. Cohn, Yufei Zhao, “Sphere packing bounds via spherical codes”, Duke Math. J., 163:10 (2014), 1965–2002 | DOI | MR | Zbl

[14] J. Hamkins, K. Zeger, “Asymptotically dense spherical codes. I. Wrapped spherical codes”, IEEE Trans. Inform. Theory, 43:6 (1997), 1774–1785 | DOI | MR | Zbl