Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_3_a5, author = {A. G. Kuznetsov}, title = {Embedding derived categories of {Enriques~surfaces} in derived categories of {Fano} varieties}, journal = {Izvestiya. Mathematics }, pages = {534--539}, publisher = {mathdoc}, volume = {83}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a5/} }
A. G. Kuznetsov. Embedding derived categories of Enriques~surfaces in derived categories of Fano varieties. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 534-539. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a5/
[1] S. Galkin, L. Katzarkov, A. Mellit, E. Shinder, Minifolds and phantoms, 2013, arXiv: 1305.4549
[2] A. I. Bondal, A. E. Polishchuk, “Homological properties of associative algebras: the method of helices”, Russian Acad. Sci. Izv. Math., 42:2 (1994), 219–260 | DOI | MR | Zbl
[3] V. Przyjalkowski, C. Shramov, Hodge complexity for weighted complete intersections, 2018, arXiv: 1801.10489
[4] F. R. Cossec, “Reye congruences”, Trans. Amer. Math. Soc., 280:2 (1983), 737–751 | DOI | MR | Zbl
[5] C. Ingalls, A. Kuznetsov, “On nodal Enriques surfaces and quartic double solids”, Math. Ann., 361:1-2 (2015), 107–133 | DOI | MR | Zbl
[6] A. Beauville, Complex algebraic surfaces, Transl. from the French, London Math. Soc. Stud. Texts, 34, 2nd ed., Cambridge Univ. Press, Cambridge, 1996, x+132 pp. | DOI | MR | Zbl
[7] R. Hartshorne, “Ample vector bundles”, Inst. Hautes Études Sci. Publ. Math., 29 (1966), 63–94 | MR | Zbl
[8] A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 157–220 | DOI | MR | Zbl
[9] D. O. Orlov, “Triangulated categories of singularities and equivalences between Landau–Ginzburg models”, Sb. Math., 197:12 (2006), 1827–1840 | DOI | DOI | MR | Zbl
[10] M. Bernardara, M. Bolognesi, D. Faenzi, “Homological projective duality for determinantal varieties”, Adv. Math., 296 (2016), 181–209 | DOI | MR | Zbl
[11] Young-Hoon Kiem, In-Kyun Kim, Hwayoung Lee, Kyoung-Seog Lee, “All complete intersection varieties are Fano visitors”, Adv. Math., 311 (2017), 649–661 | DOI | MR | Zbl
[12] Young-Hoon Kiem, Kyoung-Seog Lee, Fano visitors, Fano dimension and orbifold Fano hosts, 2015, arXiv: 1504.07810
[13] M. S. Narasimhan, “Derived categories of moduli spaces of vector bundles on curves”, J. Geom. Phys., 122 (2017), 53–58 | DOI | MR | Zbl
[14] A. Fonarev, A. Kuznetsov, “Derived categories of curves as components of Fano manifolds”, J. Lond. Math. Soc. (2), 97:1 (2018), 24–46 | DOI | MR | Zbl