Stably rational surfaces over a quasi-finite field
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 521-533.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field and $X$ a smooth, projective, stably $k$-rational surface. If $X$ is split by a cyclic extension (for example, if the field $k$ is finite or, more generally, quasi-finite), then the surface $X$ is $k$-rational.
Keywords: rational surfaces, stable rationality, quasi-finite fields, cyclic splitting, Brauer group.
@article{IM2_2019_83_3_a4,
     author = {J.-L. Colliot-Th\'el\`ene},
     title = {Stably rational surfaces over a quasi-finite field},
     journal = {Izvestiya. Mathematics },
     pages = {521--533},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/}
}
TY  - JOUR
AU  - J.-L. Colliot-Thélène
TI  - Stably rational surfaces over a quasi-finite field
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 521
EP  - 533
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/
LA  - en
ID  - IM2_2019_83_3_a4
ER  - 
%0 Journal Article
%A J.-L. Colliot-Thélène
%T Stably rational surfaces over a quasi-finite field
%J Izvestiya. Mathematics 
%D 2019
%P 521-533
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/
%G en
%F IM2_2019_83_3_a4
J.-L. Colliot-Thélène. Stably rational surfaces over a quasi-finite field. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 521-533. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/

[1] J.-L. Colliot-Thélène, J.-J. Sansuc, “La $R$-équivalence sur les tores”, Ann. Sci. École Norm. Sup. (4), 10:2 (1977), 175–229 | DOI | MR | Zbl

[2] J.-L. Colliot-Thélène, J.-J. Sansuc, “La descente sur les variétés rationnelles. II”, Duke Math. J., 54:2 (1987), 375–492 | DOI | MR | Zbl

[3] A. Grothendieck, “Le groupe de Brauer. III. Exemples et compléments”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 88–188 | MR | Zbl

[4] J.-L. Colliot-Thélène, “Birational invariants, purity and the Gersten conjecture”, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part I, Amer. Math. Soc., Providence, RI, 1995, 1–64 | MR | Zbl

[5] A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc, P. Swinnerton-Dyer, “Variétés stablement rationnelles non rationnelles”, Ann. of Math. (2), 121:2 (1985), 283–318 | DOI | MR | Zbl

[6] J.-P. Serre, Corps locaux, Publ. Inst. Math. Univ. Nancago, VIII, Actualités Sci. Indust., no. 1296, 2-ème éd., Hermann, Paris, 1968, 245 pp. | MR | Zbl

[7] A. Pirutka, “Varieties that are not stably rational, zero-cycles and unramified cohomology”, Algebraic geometry: Salt Lake City 2015, v. 2, Proc. Sympos. Pure Math., 97, Part 2, Amer. Math. Soc., Providence, RI, 2018, 459–483 | MR

[8] J.-L. Colliot-Thélène, D. Coray, “L'équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques”, Compositio Math., 39:3 (1979), 301–332 | MR | Zbl

[9] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984, xi+470 pp. | DOI | MR | MR | Zbl

[10] S. Gille, “Permutation modules and Chow motives of geometrically rational surfaces”, With appendix by J.-L. Colliot-Thélène, J. Algebra, 440 (2015), 443–463 | DOI | MR | Zbl

[11] V. A. Iskovskikh, “Minimal models of rational surfaces over arbitrary fields”, Math. USSR-Izv., 14:1 (1980), 17–39 | DOI | MR | Zbl

[12] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996, viii+320 pp. | DOI | MR | Zbl

[13] Yu. I. Manin, Cubic forms. Algebra, geometry, arithmetic, North-Holland Math. Library, 4, 2nd ed., North-Holland Publishing Co., Amsterdam, 1986, x+326 pp. | MR | MR | Zbl | Zbl

[14] V. A. Iskovskikh, “Rational surfaces with a pencil of rational curves and with positive square of the canonical class”, Math. USSR-Sb., 12:1 (1970), 91–117 | DOI | MR | Zbl

[15] J.-L. Colliot-Thélène, J.-J. Sansuc, “On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch”, Duke Math. J., 48:2 (1981), 421–447 | DOI | MR | Zbl

[16] A. Várilly-Alvarado, “Arithmetic of del Pezzo surfaces”, Birational geometry, rational curves, and arithmetic, Simons Symp., Springer, Cham, 2013, 293–319 | DOI | MR | Zbl

[17] V. A. Iskovskikh, “Birational properties of a surface of degree 4 in $\mathbf P^4_k$”, Math. USSR-Sb., 17:1 (1972), 30–36 | DOI | MR | Zbl

[18] J. S. Frame, “The classes and representations of the groups of 27 lines and 28 bitangents”, Ann. Mat. Pura Appl. (4), 32 (1951), 83–119 | DOI | MR | Zbl

[19] H. P. F. Swinnerton-Dyer, “The zeta function of a cubic surface over a finite field”, Proc. Cambridge Philos. Soc., 63 (1967), 55–71 | DOI | MR | Zbl

[20] T. Urabe, “Calculation of Manin's invariant for Del Pezzo surfaces”, Math. Comp., 65:213 (1996), 247–258 | DOI | MR | Zbl

[21] B. Banwait, F. Fité, D. Loughran, “Del Pezzo surfaces over finite fields and their Frobenius traces”, Math. Proc. Cambridge Philos. Soc., Publ. online 2018 | DOI

[22] Shuijing Li, Rational points on Del Pezzo surface of degree $1$ and $2$, Thesis (Ph.D.), Rice Univ., 2010, 78 pp. ; arXiv: 0904.3555 | MR