Stably rational surfaces over a quasi-finite field
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 521-533

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field and $X$ a smooth, projective, stably $k$-rational surface. If $X$ is split by a cyclic extension (for example, if the field $k$ is finite or, more generally, quasi-finite), then the surface $X$ is $k$-rational.
Keywords: rational surfaces, stable rationality, quasi-finite fields, cyclic splitting, Brauer group.
@article{IM2_2019_83_3_a4,
     author = {J.-L. Colliot-Th\'el\`ene},
     title = {Stably rational surfaces over a quasi-finite field},
     journal = {Izvestiya. Mathematics },
     pages = {521--533},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/}
}
TY  - JOUR
AU  - J.-L. Colliot-Thélène
TI  - Stably rational surfaces over a quasi-finite field
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 521
EP  - 533
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/
LA  - en
ID  - IM2_2019_83_3_a4
ER  - 
%0 Journal Article
%A J.-L. Colliot-Thélène
%T Stably rational surfaces over a quasi-finite field
%J Izvestiya. Mathematics 
%D 2019
%P 521-533
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/
%G en
%F IM2_2019_83_3_a4
J.-L. Colliot-Thélène. Stably rational surfaces over a quasi-finite field. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 521-533. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/