Stably rational surfaces over a quasi-finite field
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 521-533
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $k$ be a field and $X$ a smooth, projective,
stably $k$-rational surface. If $X$ is split by a cyclic extension
(for example, if the field $k$ is finite or, more generally, quasi-finite),
then the surface $X$ is $k$-rational.
Keywords:
rational surfaces, stable rationality, quasi-finite fields, cyclic splitting, Brauer group.
@article{IM2_2019_83_3_a4,
author = {J.-L. Colliot-Th\'el\`ene},
title = {Stably rational surfaces over a quasi-finite field},
journal = {Izvestiya. Mathematics },
pages = {521--533},
publisher = {mathdoc},
volume = {83},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/}
}
J.-L. Colliot-Thélène. Stably rational surfaces over a quasi-finite field. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 521-533. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a4/