Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_3_a3, author = {Yu. G. Zarhin}, title = {Division by 2 on odd-degree hyperelliptic curves and their {Jacobians}}, journal = {Izvestiya. Mathematics }, pages = {501--520}, publisher = {mathdoc}, volume = {83}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/} }
Yu. G. Zarhin. Division by 2 on odd-degree hyperelliptic curves and their Jacobians. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 501-520. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/
[1] D. Mumford, Tata lectures on theta, v. II, Progr. Math., 43, Birkhäuser Boston, Inc., Boston, MA, 1984, xiv+272 pp. | DOI | MR | Zbl
[2] L. C. Washington, Elliptic curves. Number theory and cryptography, Discrete Math. Appl. (Boca Raton), 2nd ed., Chapman Hall/CRC, Boca Raton, FL, 2008, xviii+513 pp. | DOI | MR | Zbl
[3] M. Stoll, “Chabauty without the Mordell–Weil group”, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017, 623–663 ; arXiv: 1506.04286 | DOI | MR | Zbl
[4] B. M. Bekker, Yu. G. Zarhin, “Division by 2 of rational points on elliptic curves”, St. Petersburg Math. J., 29:4 (2018), 683–713 | DOI | MR | Zbl
[5] E. F. Schaefer, “$2$-descent on the Jacobians of hyperelliptic curves”, J. Number Theory, 51:2 (1995), 219–232 | DOI | MR | Zbl
[6] J. Yelton, “Images of $2$-adic representations associated to hyperelliptic Jacobians”, J. Number Theory, 151 (2015), 7–17 | DOI | MR | Zbl
[7] M. Stoll, Arithmetic of hyperelliptic curves, Summer semester 2014, Univ. of Bayreuth, 2014, 42 pp. http://www.mathe2.uni-bayreuth.de/stoll/teaching/ArithHypKurven-SS2014/Skript-ArithHypCurves-pub-screen.pdf
[8] J. Boxall, D. Grant, “Examples of torsion points on genus two curves”, Trans. Amer. Math. Soc., 352:10 (2000), 4533–4555 | DOI | MR | Zbl
[9] Zh. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968, 285 pp. ; J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago, VII, Hermann, Paris, 1959, 202 pp. ; J.-P. Serre, Algebraic groups and class fields, Grad. Texts in Math., 117, Springer-Verlag, New York, 1988, x+207 с. | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[10] N. Bruin, E. V. Flynn, “Towers of $2$-covers of hyperelliptic curves”, Trans. Amer. Math. Soc., 357:11 (2005), 4329–4347 | DOI | MR | Zbl
[11] J. Boxall, D. Grant, F. Leprévost, “$5$-torsion points on curves of genus $2$”, J. London Math. Soc. (2), 64:1 (2001), 29–43 | DOI | MR | Zbl
[12] M. Raynaud, “Courbes sur une variété abélienne et points de torsion”, Invent. Math., 71:1 (1983), 207–233 | DOI | MR | Zbl
[13] B. Poonen, M. Stoll, “Most odd degree hyperelliptic curves have only one rational point”, Ann. of Math. (2), 180:3 (2014), 1137–1166 | DOI | MR | Zbl
[14] M. Raynaud, “Sous-variétés d'une variété abélienne et points de torsion”, Arithmetic and geometry, Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, v. I, Progr. Math., 35, Birkhäuser Boston, Boston, MA, 1983, 327–352 | MR | Zbl