Division by 2 on odd-degree hyperelliptic curves and their Jacobians
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 501-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an algebraically closed field of characteristic different from $2$, $g$ a positive integer, $f(x)$ a polynomial of degree $2g+1$ with coefficients in $K$ and without multiple roots, $\mathcal{C}\colon y^2=f(x)$ the corresponding hyperelliptic curve of genus $g$ over $K$, and $J$ its Jacobian. We identify $\mathcal{C}$ with the image of its canonical embedding in $J$ (the infinite point of $\mathcal{C}$ goes to the identity element of $J$). It is well known that for every $\mathfrak{b} \in J(K)$ there are exactly $2^{2g}$ elements $\mathfrak{a}\in J(K)$ such that $2\mathfrak{a}=\mathfrak{b}$. Stoll constructed an algorithm that provides the Mumford representations of all such $\mathfrak{a}$ in terms of the Mumford representation of $\mathfrak{b}$. The aim of this paper is to give explicit formulae for the Mumford representations of all such $\mathfrak{a}$ in terms of the coordinates $a,b$, where $\mathfrak{b}\in J(K)$ is given by a point $P=(a,b) \in \mathcal{C}(K)\subset J(K)$. We also prove that if $g>1$, then $\mathcal{C}(K)$ does not contain torsion points of orders between $3$ and $2g$.
Keywords: hyperelliptic curves, Weierstrass points, Jacobians
Mots-clés : torsion points.
@article{IM2_2019_83_3_a3,
     author = {Yu. G. Zarhin},
     title = {Division by 2 on odd-degree hyperelliptic curves and their {Jacobians}},
     journal = {Izvestiya. Mathematics },
     pages = {501--520},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Division by 2 on odd-degree hyperelliptic curves and their Jacobians
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 501
EP  - 520
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/
LA  - en
ID  - IM2_2019_83_3_a3
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Division by 2 on odd-degree hyperelliptic curves and their Jacobians
%J Izvestiya. Mathematics 
%D 2019
%P 501-520
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/
%G en
%F IM2_2019_83_3_a3
Yu. G. Zarhin. Division by 2 on odd-degree hyperelliptic curves and their Jacobians. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 501-520. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/

[1] D. Mumford, Tata lectures on theta, v. II, Progr. Math., 43, Birkhäuser Boston, Inc., Boston, MA, 1984, xiv+272 pp. | DOI | MR | Zbl

[2] L. C. Washington, Elliptic curves. Number theory and cryptography, Discrete Math. Appl. (Boca Raton), 2nd ed., Chapman Hall/CRC, Boca Raton, FL, 2008, xviii+513 pp. | DOI | MR | Zbl

[3] M. Stoll, “Chabauty without the Mordell–Weil group”, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017, 623–663 ; arXiv: 1506.04286 | DOI | MR | Zbl

[4] B. M. Bekker, Yu. G. Zarhin, “Division by 2 of rational points on elliptic curves”, St. Petersburg Math. J., 29:4 (2018), 683–713 | DOI | MR | Zbl

[5] E. F. Schaefer, “$2$-descent on the Jacobians of hyperelliptic curves”, J. Number Theory, 51:2 (1995), 219–232 | DOI | MR | Zbl

[6] J. Yelton, “Images of $2$-adic representations associated to hyperelliptic Jacobians”, J. Number Theory, 151 (2015), 7–17 | DOI | MR | Zbl

[7] M. Stoll, Arithmetic of hyperelliptic curves, Summer semester 2014, Univ. of Bayreuth, 2014, 42 pp. http://www.mathe2.uni-bayreuth.de/stoll/teaching/ArithHypKurven-SS2014/Skript-ArithHypCurves-pub-screen.pdf

[8] J. Boxall, D. Grant, “Examples of torsion points on genus two curves”, Trans. Amer. Math. Soc., 352:10 (2000), 4533–4555 | DOI | MR | Zbl

[9] Zh. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968, 285 pp. ; J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago, VII, Hermann, Paris, 1959, 202 pp. ; J.-P. Serre, Algebraic groups and class fields, Grad. Texts in Math., 117, Springer-Verlag, New York, 1988, x+207 с. | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[10] N. Bruin, E. V. Flynn, “Towers of $2$-covers of hyperelliptic curves”, Trans. Amer. Math. Soc., 357:11 (2005), 4329–4347 | DOI | MR | Zbl

[11] J. Boxall, D. Grant, F. Leprévost, “$5$-torsion points on curves of genus $2$”, J. London Math. Soc. (2), 64:1 (2001), 29–43 | DOI | MR | Zbl

[12] M. Raynaud, “Courbes sur une variété abélienne et points de torsion”, Invent. Math., 71:1 (1983), 207–233 | DOI | MR | Zbl

[13] B. Poonen, M. Stoll, “Most odd degree hyperelliptic curves have only one rational point”, Ann. of Math. (2), 180:3 (2014), 1137–1166 | DOI | MR | Zbl

[14] M. Raynaud, “Sous-variétés d'une variété abélienne et points de torsion”, Arithmetic and geometry, Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, v. I, Progr. Math., 35, Birkhäuser Boston, Boston, MA, 1983, 327–352 | MR | Zbl