Division by 2 on odd-degree hyperelliptic curves and their Jacobians
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 501-520

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an algebraically closed field of characteristic different from $2$, $g$ a positive integer, $f(x)$ a polynomial of degree $2g+1$ with coefficients in $K$ and without multiple roots, $\mathcal{C}\colon y^2=f(x)$ the corresponding hyperelliptic curve of genus $g$ over $K$, and $J$ its Jacobian. We identify $\mathcal{C}$ with the image of its canonical embedding in $J$ (the infinite point of $\mathcal{C}$ goes to the identity element of $J$). It is well known that for every $\mathfrak{b} \in J(K)$ there are exactly $2^{2g}$ elements $\mathfrak{a}\in J(K)$ such that $2\mathfrak{a}=\mathfrak{b}$. Stoll constructed an algorithm that provides the Mumford representations of all such $\mathfrak{a}$ in terms of the Mumford representation of $\mathfrak{b}$. The aim of this paper is to give explicit formulae for the Mumford representations of all such $\mathfrak{a}$ in terms of the coordinates $a,b$, where $\mathfrak{b}\in J(K)$ is given by a point $P=(a,b) \in \mathcal{C}(K)\subset J(K)$. We also prove that if $g>1$, then $\mathcal{C}(K)$ does not contain torsion points of orders between $3$ and $2g$.
Keywords: hyperelliptic curves, Weierstrass points, Jacobians
Mots-clés : torsion points.
@article{IM2_2019_83_3_a3,
     author = {Yu. G. Zarhin},
     title = {Division by 2 on odd-degree hyperelliptic curves and their {Jacobians}},
     journal = {Izvestiya. Mathematics },
     pages = {501--520},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Division by 2 on odd-degree hyperelliptic curves and their Jacobians
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 501
EP  - 520
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/
LA  - en
ID  - IM2_2019_83_3_a3
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Division by 2 on odd-degree hyperelliptic curves and their Jacobians
%J Izvestiya. Mathematics 
%D 2019
%P 501-520
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/
%G en
%F IM2_2019_83_3_a3
Yu. G. Zarhin. Division by 2 on odd-degree hyperelliptic curves and their Jacobians. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 501-520. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a3/