Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_3_a2, author = {I. Dolgachev and A. Duncan}, title = {Automorphisms of cubic surfaces in positive characteristic}, journal = {Izvestiya. Mathematics }, pages = {424--500}, publisher = {mathdoc}, volume = {83}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/} }
I. Dolgachev; A. Duncan. Automorphisms of cubic surfaces in positive characteristic. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 424-500. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/
[1] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548 | DOI | MR | Zbl
[2] S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Mayer Müller, Berlin, 1895, 111 pp. | Zbl
[3] A. Wiman, “Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene”, Math. Ann., 48:1-2 (1896), 195–240 | DOI | MR | Zbl
[4] B. Segre, The non-singular cubic surfaces, Oxford Univ. Press, Oxford, 1942, xi+180 pp. | MR | Zbl
[5] T. Hosoh, “Automorphism groups of cubic surfaces”, J. Algebra, 192:2 (1997), 651–677 | DOI | MR | Zbl
[6] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl
[7] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59 | MR | Zbl
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985, xxxiv+252 pp., With comput. assistance from J. G. Thackray | MR | Zbl
[9] J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis”, Séminaire Bourbaki, Exposés 997–1011, v. 2008/2009, Astérisque, 332, Soc. Math. France, Paris, 2010, vii, 75–100, Exp. No. 1000 | MR | Zbl
[10] I. Dolgachev, A. Duncan, “Regular pairs of quadratic forms on odd-dimensional spaces in characteristic $2$”, Algebra Number Theory, 12:1 (2018), 99–130 | DOI | MR | Zbl
[11] A. Emch, “On a new normal form of the general cubic surface”, Amer. J. Math., 53:4 (1931), 902–910 | DOI | MR | Zbl
[12] F. Klein, Lektsii ob ikosaedre i reshenii uravnenii pyatoi stepeni, Nauka, M., 1989, 336 pp. ; F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig, 1884, xxviii+343 pp. ; Lectures on the icosahedron and solution of equations of the fifth degree, 2nd and rev. ed., Dover Publications, New York, 1956, xvi+289 с. | MR | Zbl | MR | Zbl | MR | Zbl
[13] D. J. Winter, “Representations of locally finite groups”, Bull. Amer. Math. Soc., 74 (1968), 145–148 | DOI | MR | Zbl
[14] M. Suzuki, Group theory. I, Transl. from the Japan., Grundlehren Math. Wiss., 247, Springer-Verlag, Berlin–New York, 1982, xiv+434 pp. | MR | Zbl
[15] Yu. I. Manin, Cubic forms. Algebra, geometry, arithmetic, North-Holland Math. Library, 4, 2nd ed., North-Holland Publishing Co., Amsterdam, 1986, x+326 pp. | MR | MR | Zbl | Zbl
[16] G. Neuman, “Rational surfaces with too many vector fields”, Proc. Amer. Math. Soc., 76:2 (1979), 189–195 | DOI | MR | Zbl
[17] E. Dardanelli, B. van Geemen, “Hessians and the moduli space of cubic surfaces”, Algebraic geometry, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007, 17–36 | DOI | MR | Zbl
[18] A. Beauville, “Sur les hypersurfaces dont les sections hyperplanes sont à module constant”, The Grothendieck Festschrift, With an appendix by D. Eisenbud, C. Huneke, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 121–133 | MR | Zbl
[19] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer-Verlag, Berlin, 1998, xiv+470 pp. | DOI | MR | Zbl
[20] M. Demazure, “Résultant, discriminant”, Enseign. Math. (2), 58:3-4 (2012), 333–373 | DOI | MR | Zbl
[21] Z. Chen, “A prehomogeneous vector space of characteristic $3$”, Group theory (Beijing, 1984), Lecture Notes in Math., 1185, Springer, Berlin, 1986, 266–276 | DOI | MR | Zbl
[22] A. M. Cohen, D. B. Wales, “$\operatorname{GL}(4)$-orbits in a $16$-dimensional module for characteristic $3$”, J. Algebra, 185:1 (1996), 85–107 | DOI | MR | Zbl
[23] T. Shioda, “Arithmetic and geometry of Fermat curves”, Algebraic geometry seminar (Singapore, 1987), World Sci. Publ., Singapore, 1988, 95–102 | MR | Zbl
[24] J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1985, x+316 pp. | MR | Zbl
[25] A. Emch, “Properties of the cubic surface derived from a new normal form”, Amer. J. Math., 61:1 (1939), 115–122 | DOI | MR | Zbl
[26] A. L. Dixon, V. C. Morton, “Planes, points, and surfaces associated with a cubic surface”, Proc. London Math. Soc. (2), 37 (1934), 221–240 | DOI | MR | Zbl
[27] S. Saito, “General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings”, Amer. J. Math., 109:6 (1987), 1009–1042 | DOI | MR | Zbl
[28] H. E. A. E. Campbell, D. L. Wehlau, Modular invariant theory, Encyclopaedia Math. Sci., 139, Invariant Theory Algebr. Transform. Groups, 8, Springer-Verlag, Berlin, 2011, xiv+233 pp. | DOI | MR | Zbl
[29] J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp. | DOI | MR | Zbl