Automorphisms of cubic surfaces in positive characteristic
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 424-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify all possible automorphism groups of smooth cubic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quartic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automorphism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive characteristic, together with a group action, can be lifted to characteristic zero.
Keywords: cubic surfaces, automorphisms, positive characteristic.
@article{IM2_2019_83_3_a2,
     author = {I. Dolgachev and A. Duncan},
     title = {Automorphisms of cubic surfaces in positive characteristic},
     journal = {Izvestiya. Mathematics },
     pages = {424--500},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/}
}
TY  - JOUR
AU  - I. Dolgachev
AU  - A. Duncan
TI  - Automorphisms of cubic surfaces in positive characteristic
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 424
EP  - 500
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/
LA  - en
ID  - IM2_2019_83_3_a2
ER  - 
%0 Journal Article
%A I. Dolgachev
%A A. Duncan
%T Automorphisms of cubic surfaces in positive characteristic
%J Izvestiya. Mathematics 
%D 2019
%P 424-500
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/
%G en
%F IM2_2019_83_3_a2
I. Dolgachev; A. Duncan. Automorphisms of cubic surfaces in positive characteristic. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 424-500. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/

[1] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548 | DOI | MR | Zbl

[2] S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Mayer Müller, Berlin, 1895, 111 pp. | Zbl

[3] A. Wiman, “Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene”, Math. Ann., 48:1-2 (1896), 195–240 | DOI | MR | Zbl

[4] B. Segre, The non-singular cubic surfaces, Oxford Univ. Press, Oxford, 1942, xi+180 pp. | MR | Zbl

[5] T. Hosoh, “Automorphism groups of cubic surfaces”, J. Algebra, 192:2 (1997), 651–677 | DOI | MR | Zbl

[6] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl

[7] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59 | MR | Zbl

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985, xxxiv+252 pp., With comput. assistance from J. G. Thackray | MR | Zbl

[9] J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis”, Séminaire Bourbaki, Exposés 997–1011, v. 2008/2009, Astérisque, 332, Soc. Math. France, Paris, 2010, vii, 75–100, Exp. No. 1000 | MR | Zbl

[10] I. Dolgachev, A. Duncan, “Regular pairs of quadratic forms on odd-dimensional spaces in characteristic $2$”, Algebra Number Theory, 12:1 (2018), 99–130 | DOI | MR | Zbl

[11] A. Emch, “On a new normal form of the general cubic surface”, Amer. J. Math., 53:4 (1931), 902–910 | DOI | MR | Zbl

[12] F. Klein, Lektsii ob ikosaedre i reshenii uravnenii pyatoi stepeni, Nauka, M., 1989, 336 pp. ; F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig, 1884, xxviii+343 pp. ; Lectures on the icosahedron and solution of equations of the fifth degree, 2nd and rev. ed., Dover Publications, New York, 1956, xvi+289 с. | MR | Zbl | MR | Zbl | MR | Zbl

[13] D. J. Winter, “Representations of locally finite groups”, Bull. Amer. Math. Soc., 74 (1968), 145–148 | DOI | MR | Zbl

[14] M. Suzuki, Group theory. I, Transl. from the Japan., Grundlehren Math. Wiss., 247, Springer-Verlag, Berlin–New York, 1982, xiv+434 pp. | MR | Zbl

[15] Yu. I. Manin, Cubic forms. Algebra, geometry, arithmetic, North-Holland Math. Library, 4, 2nd ed., North-Holland Publishing Co., Amsterdam, 1986, x+326 pp. | MR | MR | Zbl | Zbl

[16] G. Neuman, “Rational surfaces with too many vector fields”, Proc. Amer. Math. Soc., 76:2 (1979), 189–195 | DOI | MR | Zbl

[17] E. Dardanelli, B. van Geemen, “Hessians and the moduli space of cubic surfaces”, Algebraic geometry, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007, 17–36 | DOI | MR | Zbl

[18] A. Beauville, “Sur les hypersurfaces dont les sections hyperplanes sont à module constant”, The Grothendieck Festschrift, With an appendix by D. Eisenbud, C. Huneke, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 121–133 | MR | Zbl

[19] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer-Verlag, Berlin, 1998, xiv+470 pp. | DOI | MR | Zbl

[20] M. Demazure, “Résultant, discriminant”, Enseign. Math. (2), 58:3-4 (2012), 333–373 | DOI | MR | Zbl

[21] Z. Chen, “A prehomogeneous vector space of characteristic $3$”, Group theory (Beijing, 1984), Lecture Notes in Math., 1185, Springer, Berlin, 1986, 266–276 | DOI | MR | Zbl

[22] A. M. Cohen, D. B. Wales, “$\operatorname{GL}(4)$-orbits in a $16$-dimensional module for characteristic $3$”, J. Algebra, 185:1 (1996), 85–107 | DOI | MR | Zbl

[23] T. Shioda, “Arithmetic and geometry of Fermat curves”, Algebraic geometry seminar (Singapore, 1987), World Sci. Publ., Singapore, 1988, 95–102 | MR | Zbl

[24] J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1985, x+316 pp. | MR | Zbl

[25] A. Emch, “Properties of the cubic surface derived from a new normal form”, Amer. J. Math., 61:1 (1939), 115–122 | DOI | MR | Zbl

[26] A. L. Dixon, V. C. Morton, “Planes, points, and surfaces associated with a cubic surface”, Proc. London Math. Soc. (2), 37 (1934), 221–240 | DOI | MR | Zbl

[27] S. Saito, “General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings”, Amer. J. Math., 109:6 (1987), 1009–1042 | DOI | MR | Zbl

[28] H. E. A. E. Campbell, D. L. Wehlau, Modular invariant theory, Encyclopaedia Math. Sci., 139, Invariant Theory Algebr. Transform. Groups, 8, Springer-Verlag, Berlin, 2011, xiv+233 pp. | DOI | MR | Zbl

[29] J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp. | DOI | MR | Zbl