Automorphisms of cubic surfaces in positive characteristic
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 424-500

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify all possible automorphism groups of smooth cubic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quartic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automorphism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive characteristic, together with a group action, can be lifted to characteristic zero.
Keywords: cubic surfaces, automorphisms, positive characteristic.
@article{IM2_2019_83_3_a2,
     author = {I. Dolgachev and A. Duncan},
     title = {Automorphisms of cubic surfaces in positive characteristic},
     journal = {Izvestiya. Mathematics },
     pages = {424--500},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/}
}
TY  - JOUR
AU  - I. Dolgachev
AU  - A. Duncan
TI  - Automorphisms of cubic surfaces in positive characteristic
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 424
EP  - 500
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/
LA  - en
ID  - IM2_2019_83_3_a2
ER  - 
%0 Journal Article
%A I. Dolgachev
%A A. Duncan
%T Automorphisms of cubic surfaces in positive characteristic
%J Izvestiya. Mathematics 
%D 2019
%P 424-500
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/
%G en
%F IM2_2019_83_3_a2
I. Dolgachev; A. Duncan. Automorphisms of cubic surfaces in positive characteristic. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 424-500. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a2/