Biregular and birational geometry of quartic double solids with 15 nodes
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 415-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional del Pezzo varieties of degree $2$ are double covers of $\mathbb{P}^{3}$ branched in a quartic. We prove that if a del Pezzo variety of degree $2$ has exactly $15$ nodes, then the corresponding quartic is a hyperplane section of the Igusa quartic or, equivalently, all such del Pezzo varieties are members of a particular linear system on the Coble fourfold. Their automorphism groups are induced from the automorphism group of the Coble fourfold. We also classify all birationally rigid varieties of this type.
Keywords: del Pezzo varieties, automorphism groups, birational rigidity.
@article{IM2_2019_83_3_a1,
     author = {A. Avilov},
     title = {Biregular and birational geometry of quartic double solids with 15 nodes},
     journal = {Izvestiya. Mathematics },
     pages = {415--423},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/}
}
TY  - JOUR
AU  - A. Avilov
TI  - Biregular and birational geometry of quartic double solids with 15 nodes
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 415
EP  - 423
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/
LA  - en
ID  - IM2_2019_83_3_a1
ER  - 
%0 Journal Article
%A A. Avilov
%T Biregular and birational geometry of quartic double solids with 15 nodes
%J Izvestiya. Mathematics 
%D 2019
%P 415-423
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/
%G en
%F IM2_2019_83_3_a1
A. Avilov. Biregular and birational geometry of quartic double solids with 15 nodes. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 415-423. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/

[1] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548 | DOI | MR | Zbl

[2] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | DOI | MR | Zbl

[3] A. A. Avilov, “Automorphisms of threefolds that can be represented as an intersection of two quadrics”, Sb. Math., 207:3 (2016), 315–330 | DOI | DOI | MR | Zbl

[4] A. Avilov, “Automorphisms of singular three-dimensional cubic hypersurfaces”, Eur. J. Math., 4:3 (2018), 761–777 | DOI | MR

[5] I. Cheltsov, V. Przyjalkowski, C. Shramov, Which quartic double solids are rational?, accepted to J. Alg. Geom., 2015, arXiv: 1508.07277

[6] I. Cheltsov, A. Kuznetsov, C. Shramov, Coble fourfold, $S_6$-invariant quartic threefolds, and Wiman–Edge sextics, 2017, arXiv: 1712.08906

[7] C. Rito, X. Roulleau, A. Sarti, Explicit Schoen surfaces, 2016, arXiv: 1609.02235

[8] I. V. Dolgachev, “Abstract configurations in algebraic geometry”, The Fano conference, Univ. Torino, Turin, 2004, 423–462 | MR | Zbl

[9] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl

[10] I. Cheltsov, V. Przyjalkowski, C. Shramov, “Quartic double solids with icosahedral symmetry”, Eur. J. Math., 2:1 (2016), 96–119 | DOI | MR | Zbl

[11] I. Cheltsov, C. Shramov, Cremona groups and the icosahedron, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016, xxi+504 pp. | DOI | MR | Zbl