Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_3_a1, author = {A. Avilov}, title = {Biregular and birational geometry of quartic double solids with 15 nodes}, journal = {Izvestiya. Mathematics }, pages = {415--423}, publisher = {mathdoc}, volume = {83}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/} }
A. Avilov. Biregular and birational geometry of quartic double solids with 15 nodes. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 415-423. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/
[1] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548 | DOI | MR | Zbl
[2] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | DOI | MR | Zbl
[3] A. A. Avilov, “Automorphisms of threefolds that can be represented as an intersection of two quadrics”, Sb. Math., 207:3 (2016), 315–330 | DOI | DOI | MR | Zbl
[4] A. Avilov, “Automorphisms of singular three-dimensional cubic hypersurfaces”, Eur. J. Math., 4:3 (2018), 761–777 | DOI | MR
[5] I. Cheltsov, V. Przyjalkowski, C. Shramov, Which quartic double solids are rational?, accepted to J. Alg. Geom., 2015, arXiv: 1508.07277
[6] I. Cheltsov, A. Kuznetsov, C. Shramov, Coble fourfold, $S_6$-invariant quartic threefolds, and Wiman–Edge sextics, 2017, arXiv: 1712.08906
[7] C. Rito, X. Roulleau, A. Sarti, Explicit Schoen surfaces, 2016, arXiv: 1609.02235
[8] I. V. Dolgachev, “Abstract configurations in algebraic geometry”, The Fano conference, Univ. Torino, Turin, 2004, 423–462 | MR | Zbl
[9] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl
[10] I. Cheltsov, V. Przyjalkowski, C. Shramov, “Quartic double solids with icosahedral symmetry”, Eur. J. Math., 2:1 (2016), 96–119 | DOI | MR | Zbl
[11] I. Cheltsov, C. Shramov, Cremona groups and the icosahedron, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016, xxi+504 pp. | DOI | MR | Zbl