Biregular and birational geometry of quartic double solids with 15 nodes
Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 415-423

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional del Pezzo varieties of degree $2$ are double covers of $\mathbb{P}^{3}$ branched in a quartic. We prove that if a del Pezzo variety of degree $2$ has exactly $15$ nodes, then the corresponding quartic is a hyperplane section of the Igusa quartic or, equivalently, all such del Pezzo varieties are members of a particular linear system on the Coble fourfold. Their automorphism groups are induced from the automorphism group of the Coble fourfold. We also classify all birationally rigid varieties of this type.
Keywords: del Pezzo varieties, automorphism groups, birational rigidity.
@article{IM2_2019_83_3_a1,
     author = {A. Avilov},
     title = {Biregular and birational geometry of quartic double solids with 15 nodes},
     journal = {Izvestiya. Mathematics },
     pages = {415--423},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/}
}
TY  - JOUR
AU  - A. Avilov
TI  - Biregular and birational geometry of quartic double solids with 15 nodes
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 415
EP  - 423
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/
LA  - en
ID  - IM2_2019_83_3_a1
ER  - 
%0 Journal Article
%A A. Avilov
%T Biregular and birational geometry of quartic double solids with 15 nodes
%J Izvestiya. Mathematics 
%D 2019
%P 415-423
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/
%G en
%F IM2_2019_83_3_a1
A. Avilov. Biregular and birational geometry of quartic double solids with 15 nodes. Izvestiya. Mathematics , Tome 83 (2019) no. 3, pp. 415-423. http://geodesic.mathdoc.fr/item/IM2_2019_83_3_a1/