Asymptotics of solutions of a~modified Whitham equation with surface tension
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 361-390

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the large-time behaviour of solutions of the Cauchy problem for a modified Whitham equation, $$ \begin{cases} u_{t}+i\mathbf{\Lambda}u-\partial_{x}u^3=0, (t,x) \in\mathbb{R}^2, \\ u(0,x)=u_0(x), \in \mathbb{R}, \end{cases} $$ where the pseudodifferential operator $\mathbf{\Lambda}\equiv \Lambda (-i\partial_{x})=\mathcal{F}^{-1}[\Lambda (\xi) \mathcal{F}]$ is given by the symbol $$ \Lambda (\xi)=a^{-{1}/{2}}\xi \biggl(\sqrt{(1+a^2\xi^2) \frac{\operatorname{tanh}a\xi}{a\xi}\,}-1\biggr) $$ with a parameter $a>0$. This symbol corresponds to the total dispersion relation for water waves taking surface tension into account. Assuming that the total mass of the initial data is equal to zero ($\int_{\mathbb{R}}u_0(x)\,dx=0$) and the initial data $u_0$ are small in the norm of $\mathbf{H}^{\nu}(\mathbb{R}) \cap \mathbf{H}^{0,1}(\mathbb{R})$, $\nu \geqslant 22$, we prove the existence of a global-in-time solution and describe its large-time asymptotic behaviour.
Keywords: Whitham equation, critical non-linearity, large-time asymptotics.
@article{IM2_2019_83_2_a9,
     author = {P. I. Naumkin},
     title = {Asymptotics of solutions of a~modified {Whitham} equation with surface tension},
     journal = {Izvestiya. Mathematics },
     pages = {361--390},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/}
}
TY  - JOUR
AU  - P. I. Naumkin
TI  - Asymptotics of solutions of a~modified Whitham equation with surface tension
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 361
EP  - 390
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/
LA  - en
ID  - IM2_2019_83_2_a9
ER  - 
%0 Journal Article
%A P. I. Naumkin
%T Asymptotics of solutions of a~modified Whitham equation with surface tension
%J Izvestiya. Mathematics 
%D 2019
%P 361-390
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/
%G en
%F IM2_2019_83_2_a9
P. I. Naumkin. Asymptotics of solutions of a~modified Whitham equation with surface tension. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 361-390. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/