Asymptotics of solutions of a~modified Whitham equation with surface tension
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 361-390
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the large-time behaviour of solutions of the Cauchy problem
for a modified Whitham equation,
$$
\begin{cases}
u_{t}+i\mathbf{\Lambda}u-\partial_{x}u^3=0, (t,x) \in\mathbb{R}^2,
\\
u(0,x)=u_0(x), \in \mathbb{R},
\end{cases}
$$
where the pseudodifferential operator $\mathbf{\Lambda}\equiv \Lambda
(-i\partial_{x})=\mathcal{F}^{-1}[\Lambda (\xi) \mathcal{F}]$ is given
by the symbol
$$
\Lambda (\xi)=a^{-{1}/{2}}\xi
\biggl(\sqrt{(1+a^2\xi^2) \frac{\operatorname{tanh}a\xi}{a\xi}\,}-1\biggr)
$$
with a parameter $a>0$. This symbol corresponds to the total dispersion
relation for water waves taking surface tension into account.
Assuming that the total mass of the initial data is equal to zero
($\int_{\mathbb{R}}u_0(x)\,dx=0$) and the initial data $u_0$
are small in the norm of $\mathbf{H}^{\nu}(\mathbb{R}) \cap
\mathbf{H}^{0,1}(\mathbb{R})$, $\nu \geqslant 22$,
we prove the existence of a global-in-time solution and describe its
large-time asymptotic behaviour.
Keywords:
Whitham equation, critical non-linearity, large-time asymptotics.
@article{IM2_2019_83_2_a9,
author = {P. I. Naumkin},
title = {Asymptotics of solutions of a~modified {Whitham} equation with surface tension},
journal = {Izvestiya. Mathematics },
pages = {361--390},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/}
}
P. I. Naumkin. Asymptotics of solutions of a~modified Whitham equation with surface tension. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 361-390. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/