Asymptotics of solutions of a~modified Whitham equation with surface tension
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 361-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the large-time behaviour of solutions of the Cauchy problem for a modified Whitham equation, $$ \begin{cases} u_{t}+i\mathbf{\Lambda}u-\partial_{x}u^3=0, (t,x) \in\mathbb{R}^2, \\ u(0,x)=u_0(x), \in \mathbb{R}, \end{cases} $$ where the pseudodifferential operator $\mathbf{\Lambda}\equiv \Lambda (-i\partial_{x})=\mathcal{F}^{-1}[\Lambda (\xi) \mathcal{F}]$ is given by the symbol $$ \Lambda (\xi)=a^{-{1}/{2}}\xi \biggl(\sqrt{(1+a^2\xi^2) \frac{\operatorname{tanh}a\xi}{a\xi}\,}-1\biggr) $$ with a parameter $a>0$. This symbol corresponds to the total dispersion relation for water waves taking surface tension into account. Assuming that the total mass of the initial data is equal to zero ($\int_{\mathbb{R}}u_0(x)\,dx=0$) and the initial data $u_0$ are small in the norm of $\mathbf{H}^{\nu}(\mathbb{R}) \cap \mathbf{H}^{0,1}(\mathbb{R})$, $\nu \geqslant 22$, we prove the existence of a global-in-time solution and describe its large-time asymptotic behaviour.
Keywords: Whitham equation, critical non-linearity, large-time asymptotics.
@article{IM2_2019_83_2_a9,
     author = {P. I. Naumkin},
     title = {Asymptotics of solutions of a~modified {Whitham} equation with surface tension},
     journal = {Izvestiya. Mathematics },
     pages = {361--390},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/}
}
TY  - JOUR
AU  - P. I. Naumkin
TI  - Asymptotics of solutions of a~modified Whitham equation with surface tension
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 361
EP  - 390
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/
LA  - en
ID  - IM2_2019_83_2_a9
ER  - 
%0 Journal Article
%A P. I. Naumkin
%T Asymptotics of solutions of a~modified Whitham equation with surface tension
%J Izvestiya. Mathematics 
%D 2019
%P 361-390
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/
%G en
%F IM2_2019_83_2_a9
P. I. Naumkin. Asymptotics of solutions of a~modified Whitham equation with surface tension. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 361-390. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a9/

[1] G. B. Whitham, “Variational methods and applications to water waves”, Hyperbolic equations and waves (Rencontres, Battelle Res. Inst., Seattle, WA, 1968), Springer, Berlin, 1970, 153–172 | DOI | MR | Zbl

[2] G. B. Whitham, Linear and nonlinear waves, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974, xvi+636 pp. | MR | Zbl

[3] S. Klainerman, G. Ponce, “Global, small amplitude solutions to nonlinear evolution equations”, Comm. Pure Appl. Math., 36:1 (1983), 133–141 | DOI | MR | Zbl

[4] I. P. Naumkin, “Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential”, J. Math. Phys., 57:5 (2016), 051501, 31 pp. | DOI | MR | Zbl

[5] I. P. Naumkin, “Initial-boundary value problem for the one dimensional Thirring model”, J. Differential Equations, 261:8 (2016), 4486–4523 | DOI | MR | Zbl

[6] P. I. Naumkin, I. A. Shishmarev, Nonlinear nonlocal equations in the theory of waves, Transl. Math. Monogr., 133, Amer. Math. Soc., Providence, RI, 1994, x+289 pp. | DOI | MR | Zbl

[7] J. Shatah, “Global existence of small solutions to nonlinear evolution equations”, J. Differential Equations, 46:3 (1982), 409–425 | DOI | MR | Zbl

[8] N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^2(\mathbf R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 48:1 (1988), 17–37 | DOI | MR | Zbl

[9] N. Hayashi, P. I. Naumkin, “The initial value problem for the cubic nonlinear Klein–Gordon equation”, Z. Angew. Math. Phys., 59:6 (2008), 1002–1028 | DOI | MR | Zbl

[10] N. Hayashi, P. I. Naumkin, “Factorization technique for the modified Korteweg–de Vries equation”, SUT J. Math., 52:1 (2016), 49–95 | MR | Zbl

[11] N. Hayashi, P. I. Naumkin, “Factorization technique for the fourth-order nonlinear Schrödinger equation”, Z. Angew. Math. Phys., 66:5 (2015), 2343–2377 | DOI | MR | Zbl

[12] N. Hayashi, P. I. Naumkin, “On the inhomogeneous fourth-order nonlinear Schrödinger equation”, J. Math. Phys., 56:9 (2015), 093502, 25 pp. | DOI | MR | Zbl

[13] A. P. Calderon, R. Vaillancourt, “A class of bounded pseudo-differential operators”, Proc. Nat. Acad. Sci. U.S.A., 69:5 (1972), 1185–1187 | DOI | MR | Zbl

[14] R. R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Soc. Math. France, Paris, 1978, i+185 pp. | MR | Zbl

[15] H. O. Cordes, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131 | DOI | MR | Zbl

[16] I. L. Hwang, “The $L^2$-boundedness of pseudodifferential operators”, Trans. Amer. Math. Soc., 302:1 (1987), 55–76 | DOI | MR | Zbl

[17] M. V. Fedoryuk, Asimptotika. Integraly i ryady, Nauka, M., 1987, 544 pp. | MR | Zbl