On homogenized equations of filtration in two domains with common boundary
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 330-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial-boundary value problem describing the process of filtration of a weakly viscous fluid in two distinct porous media with common boundary. We prove, at the microscopic level, the existence and uniqueness of a generalized solution of the problem on the joint motion of two incompressible elastic porous (poroelastic) bodies with distinct Lamé constants and different microstructures, and of a viscous incompressible porous fluid. Under various assumptions on the data of the problem, we derive homogenized models of filtration of an incompressible weakly viscous fluid in two distinct elastic or absolutely rigid porous media with common boundary.
Keywords: heterogeneous media, periodic structure, Stokes equations, homogenization, two-scale convergence.
Mots-clés : Lamé equations
@article{IM2_2019_83_2_a8,
     author = {A. M. Meirmanov and O. V. Galtsev and S. A. Gritsenko},
     title = {On homogenized equations of filtration in two domains with common boundary},
     journal = {Izvestiya. Mathematics },
     pages = {330--360},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a8/}
}
TY  - JOUR
AU  - A. M. Meirmanov
AU  - O. V. Galtsev
AU  - S. A. Gritsenko
TI  - On homogenized equations of filtration in two domains with common boundary
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 330
EP  - 360
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a8/
LA  - en
ID  - IM2_2019_83_2_a8
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%A O. V. Galtsev
%A S. A. Gritsenko
%T On homogenized equations of filtration in two domains with common boundary
%J Izvestiya. Mathematics 
%D 2019
%P 330-360
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a8/
%G en
%F IM2_2019_83_2_a8
A. M. Meirmanov; O. V. Galtsev; S. A. Gritsenko. On homogenized equations of filtration in two domains with common boundary. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 330-360. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a8/

[1] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Amer., 70:4 (1981), 1140–1146 | DOI | Zbl

[2] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, ix+398 pp. | DOI | MR | MR | Zbl

[3] T. Lévy, “Fluids in porous media and suspensions”, Homogenization techniques for composite media (Udine, 1985), Lecture Notes in Phys., 272, Springer, Berlin, 1987, 63–119 | DOI | MR | Zbl

[4] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | MR | Zbl | Zbl

[5] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xii+570 pp. | DOI | MR | MR | Zbl | Zbl

[6] V. V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. Math., 66:2 (2002), 299–365 | DOI | DOI | MR | Zbl

[7] S. E. Pastukhova, “Homogenization of the stationary Stokes system in a perforated domain with a mixed condition on the boundary of cavities”, Differ. Equ., 36:5 (2000), 755–766 | DOI | MR | Zbl

[8] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl

[9] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl

[10] A. M. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Math. J., 48:3 (2007), 519–538 | DOI | MR | Zbl

[11] A. M. Meirmanov, “Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity”, Sb. Math., 199:3 (2008), 361–384 | DOI | DOI | MR | Zbl

[12] A. Meirmanov, “Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media”, European J. Appl. Math., 19:3 (2008), 259–284 | DOI | MR | Zbl

[13] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[14] A. M. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, J. Math. Sci. (N. Y.), 163:2 (2009), 111–150 | DOI | MR | Zbl

[15] V. V. Zhikov, G. A. Yosifian, “Introduction to the theory of two-scale convergence”, J. Math. Sci. (N. Y.), 197:3 (2014), 325–357 | DOI | MR | Zbl

[16] W. Jäger, A. Mikelić, “On the boundary conditions at the contact interface between two porous media”, Partial differential equations. Theory and numerical solution (Praha, 1998), Chapman Hall/CRC Res. Notes Math., 406, Chapman Hall/CRC, Boca Raton, FL, 2000, 175–186 | MR | Zbl

[17] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, R.I., 1968, xi+648 pp. | MR | MR | Zbl | Zbl

[18] E. Acerbi, V. Chiadò Piat, G. Dal Maso, D. Percivale, “An extension theorem from connected sets, and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496 | DOI | MR | Zbl

[19] C. Conca, “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. Math. Pures Appl. (9), 64:1 (1985), 31–75 | MR | Zbl

[20] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Math. Appl., 2, 2nd rev. ed., Gordon and Breach Sci. Publ., New York–London–Paris, 1969, xviii+224 pp. | MR | MR | Zbl | Zbl

[21] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. 1, 2, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl