Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_2_a8, author = {A. M. Meirmanov and O. V. Galtsev and S. A. Gritsenko}, title = {On homogenized equations of filtration in two domains with common boundary}, journal = {Izvestiya. Mathematics }, pages = {330--360}, publisher = {mathdoc}, volume = {83}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a8/} }
TY - JOUR AU - A. M. Meirmanov AU - O. V. Galtsev AU - S. A. Gritsenko TI - On homogenized equations of filtration in two domains with common boundary JO - Izvestiya. Mathematics PY - 2019 SP - 330 EP - 360 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a8/ LA - en ID - IM2_2019_83_2_a8 ER -
A. M. Meirmanov; O. V. Galtsev; S. A. Gritsenko. On homogenized equations of filtration in two domains with common boundary. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 330-360. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a8/
[1] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Amer., 70:4 (1981), 1140–1146 | DOI | Zbl
[2] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, ix+398 pp. | DOI | MR | MR | Zbl
[3] T. Lévy, “Fluids in porous media and suspensions”, Homogenization techniques for composite media (Udine, 1985), Lecture Notes in Phys., 272, Springer, Berlin, 1987, 63–119 | DOI | MR | Zbl
[4] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | MR | Zbl | Zbl
[5] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xii+570 pp. | DOI | MR | MR | Zbl | Zbl
[6] V. V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. Math., 66:2 (2002), 299–365 | DOI | DOI | MR | Zbl
[7] S. E. Pastukhova, “Homogenization of the stationary Stokes system in a perforated domain with a mixed condition on the boundary of cavities”, Differ. Equ., 36:5 (2000), 755–766 | DOI | MR | Zbl
[8] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[9] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl
[10] A. M. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Math. J., 48:3 (2007), 519–538 | DOI | MR | Zbl
[11] A. M. Meirmanov, “Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity”, Sb. Math., 199:3 (2008), 361–384 | DOI | DOI | MR | Zbl
[12] A. Meirmanov, “Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media”, European J. Appl. Math., 19:3 (2008), 259–284 | DOI | MR | Zbl
[13] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[14] A. M. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, J. Math. Sci. (N. Y.), 163:2 (2009), 111–150 | DOI | MR | Zbl
[15] V. V. Zhikov, G. A. Yosifian, “Introduction to the theory of two-scale convergence”, J. Math. Sci. (N. Y.), 197:3 (2014), 325–357 | DOI | MR | Zbl
[16] W. Jäger, A. Mikelić, “On the boundary conditions at the contact interface between two porous media”, Partial differential equations. Theory and numerical solution (Praha, 1998), Chapman Hall/CRC Res. Notes Math., 406, Chapman Hall/CRC, Boca Raton, FL, 2000, 175–186 | MR | Zbl
[17] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, R.I., 1968, xi+648 pp. | MR | MR | Zbl | Zbl
[18] E. Acerbi, V. Chiadò Piat, G. Dal Maso, D. Percivale, “An extension theorem from connected sets, and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496 | DOI | MR | Zbl
[19] C. Conca, “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. Math. Pures Appl. (9), 64:1 (1985), 31–75 | MR | Zbl
[20] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Math. Appl., 2, 2nd rev. ed., Gordon and Breach Sci. Publ., New York–London–Paris, 1969, xviii+224 pp. | MR | MR | Zbl | Zbl
[21] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. 1, 2, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl