On the asymptotics of solutions of elliptic equations at the ends
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 287-314

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear elliptic differential equation $\Delta u+c(x)u=0$ defined on a Riemannian manifold $\mathcal{M}$ that has an end $\mathcal{X}$ on which the metric takes the form $dl^2=h^2(r)\,dr^2+q^2(r)\,d\theta^2$ in appropriate coordinates. Here $r\in [r_0,+\infty)$, $\theta\in S$, and $S$ is a smooth compact Riemannian manifold with metric $d\theta^2$. At the end $\mathcal{X}$, the coefficient $c(x)$ takes the form $c(x)=c(r)$. For ends of parabolic type with such metrics, we describe the property of asymptotic distinguishability of solutions of this equation. For ends of hyperbolic type, we prove a theorem on the admissible rate of convergence to zero for a difference of solutions of this equation. For both types of ends, we formulate versions of the generalized Cauchy problem with initial data $(\varphi(\theta),\psi(\theta))$ at the infinitely remote point and study its solubility. The results obtained are new and, in the case of ends of parabolic type, somewhat unexpected.
Keywords: non-compact Riemannian manifold, end of a manifold, spectral equation, asymptotic distinguishability, generalized Cauchy problem.
@article{IM2_2019_83_2_a6,
     author = {A. N. Kondrashov},
     title = {On the asymptotics of solutions of elliptic equations at the ends},
     journal = {Izvestiya. Mathematics },
     pages = {287--314},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a6/}
}
TY  - JOUR
AU  - A. N. Kondrashov
TI  - On the asymptotics of solutions of elliptic equations at the ends
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 287
EP  - 314
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a6/
LA  - en
ID  - IM2_2019_83_2_a6
ER  - 
%0 Journal Article
%A A. N. Kondrashov
%T On the asymptotics of solutions of elliptic equations at the ends
%J Izvestiya. Mathematics 
%D 2019
%P 287-314
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a6/
%G en
%F IM2_2019_83_2_a6
A. N. Kondrashov. On the asymptotics of solutions of elliptic equations at the ends. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 287-314. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a6/