On the asymptotics of solutions of elliptic equations at the ends
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 287-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear elliptic differential equation $\Delta u+c(x)u=0$ defined on a Riemannian manifold $\mathcal{M}$ that has an end $\mathcal{X}$ on which the metric takes the form $dl^2=h^2(r)\,dr^2+q^2(r)\,d\theta^2$ in appropriate coordinates. Here $r\in [r_0,+\infty)$, $\theta\in S$, and $S$ is a smooth compact Riemannian manifold with metric $d\theta^2$. At the end $\mathcal{X}$, the coefficient $c(x)$ takes the form $c(x)=c(r)$. For ends of parabolic type with such metrics, we describe the property of asymptotic distinguishability of solutions of this equation. For ends of hyperbolic type, we prove a theorem on the admissible rate of convergence to zero for a difference of solutions of this equation. For both types of ends, we formulate versions of the generalized Cauchy problem with initial data $(\varphi(\theta),\psi(\theta))$ at the infinitely remote point and study its solubility. The results obtained are new and, in the case of ends of parabolic type, somewhat unexpected.
Keywords: non-compact Riemannian manifold, end of a manifold, spectral equation, asymptotic distinguishability, generalized Cauchy problem.
@article{IM2_2019_83_2_a6,
     author = {A. N. Kondrashov},
     title = {On the asymptotics of solutions of elliptic equations at the ends},
     journal = {Izvestiya. Mathematics },
     pages = {287--314},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a6/}
}
TY  - JOUR
AU  - A. N. Kondrashov
TI  - On the asymptotics of solutions of elliptic equations at the ends
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 287
EP  - 314
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a6/
LA  - en
ID  - IM2_2019_83_2_a6
ER  - 
%0 Journal Article
%A A. N. Kondrashov
%T On the asymptotics of solutions of elliptic equations at the ends
%J Izvestiya. Mathematics 
%D 2019
%P 287-314
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a6/
%G en
%F IM2_2019_83_2_a6
A. N. Kondrashov. On the asymptotics of solutions of elliptic equations at the ends. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 287-314. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a6/

[1] R. E. Greene, H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Math., 699, Springer, Berlin, 1979, ii+215 pp. | DOI | MR | Zbl

[2] A. Grigor'yan, Heat kernel and analysis on manifolds, AMS/IP Stud. Adv. Math., 47, Amer. Math. Soc., Providence, RI; International Press, Boston, MA, 2009, xviii+482 pp. | MR | Zbl

[3] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc. (N.S.), 36:2 (1999), 135–249 | DOI | MR | Zbl

[4] S. A. Korol'kov, “Harmonic functions on Riemannian manifolds with ends”, Siberian Math. J., 49:6 (2008), 1051–1061 | DOI | MR | Zbl

[5] A. G. Losev, E. A. Mazepa, “On the asymptotic behavior of solutions of some elliptic-type equations on noncompact Riemannian manifolds”, Russian Math. (Iz. VUZ), 43:6 (1999), 39–47 | MR | Zbl

[6] A. G. Losev, “Some Liouville theorems on Riemannian manifolds of a special type”, Soviet Math. (Iz. VUZ), 35:12 (1991), 15–23 | MR | Zbl

[7] A. G. Losev, “On the hyperbolicity criterion for noncompact Riemannian manifolds of special type”, Math. Notes, 59:4 (1996), 400–404 | DOI | DOI | MR | Zbl

[8] A. G. Losev, “On some Liouville theorems on noncompact Riemannian manifolds”, Siberian Math. J., 39:1 (1998), 74–80 | DOI | MR | Zbl

[9] A. G. Losev, “Solvability of the Dirichlet problem for the Poisson equation on some noncompact Riemannian manifolds”, Differ. Equ., 53:12 (2017), 1595–1604 | DOI | DOI | MR | Zbl

[10] E. A. Mazepa, “Boundary value problems for the stationary Schrödinger equation on Riemannian manifolds”, Siberian Math. J., 43:3 (2002), 473–479 | DOI | MR | Zbl

[11] E. M. Landis, N. S. Nadirashvili, “Positive solutions of second order elliptic equations in unbounded domains”, Math. USSR-Sb., 54:1 (1986), 129–134 | DOI | MR | Zbl

[12] A. A. Grigor'yan, N. S. Nadirashvili, “The Liouville theorems and exterior boundary value problems”, Soviet Math. (Iz. VUZ), 31:5 (1987), 31–42 | MR | Zbl

[13] N. Anghel, “The $L^2$-harmonic forms on rotationally symmetric Riemannian manifolds revisited”, Proc. Amer. Math. Soc., 133:8 (2005), 2461–2467 | DOI | MR | Zbl

[14] M. Marias, “Eigenfunctions of the Laplacian on rotationally symmetric manifolds”, Trans. Amer. Math. Soc., 350:11 (1998), 4367–4375 | DOI | MR | Zbl

[15] M. Murata, “Structure of positive solutions to $(-\Delta+V)u=0$ in ${R}^n$”, Duke Math. J., 53:4 (1986), 869–943 | DOI | MR | Zbl

[16] M. Murata, “Martin boundaries of elliptic skew products, semismall perturbations, and fundamental solutions of parabolic equations”, J. Funct. Anal., 194:1 (2002), 53–141 | DOI | MR | Zbl

[17] M. Murata, T. Tsuchida, “Uniqueness of $L^1$ harmonic functions on rotationally symmetric Riemannian manifolds”, Kodai Math. J., 37:1 (2014), 1–15 | DOI | MR | Zbl

[18] W. W. Stepanow, Lehrbuch der Differentialgleichungen, Hochschulbücher für Math., 20, 2. berichtigte Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1956, ix+470 pp. | MR | Zbl | Zbl

[19] V. M. Miklyukov, “Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces”, Izv. Math., 60:4 (1996), 763–809 | DOI | DOI | MR | Zbl

[20] M. Berger, P. Gauduchon, E. Mazet, Le spectre d'une variété Riemannienne, Lecture Notes in Math., 194, Springer-Verlag, Berlin–New York, 1971, vii+251 pp. | DOI | MR | Zbl

[21] D. Grieser, “Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary”, Comm. Partial Differential Equations, 27:7-8 (2002), 1283–1299 | DOI | MR | Zbl

[22] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43–77 | MR | Zbl

[23] L. Hörmander, The analysis of linear partial differential operators, v. {III}, Grundlehren Math. Wiss., 274, Pseudo-differential operators, Springer-Verlag, Berlin, 1985, viii+525 pp. | MR | MR | Zbl

[24] N. Aronszajn, A. Krzywicki, J. Szarski, “A unique continuation theorem for exterior differential forms on Riemannian manifolds”, Ark. Mat., 4:5 (1962), 417–453 | DOI | MR | Zbl

[25] H. O. Cordes, “Über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben”, Nachr. Akad Wiss. Göttingen Math.-Phys. Kl. IIa, 1956 (1956), 239–258 | MR | Zbl

[26] V. Z. Meshkov, “On the possible rate of decay at infinity of solutions of second order partial differential equations”, Math. USSR-Sb., 72:2 (1992), 343–361 | DOI | MR | Zbl

[27] V. M. Miklyukov, “Maximal tubes and bands in Minkowski space”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 427–453 | DOI | MR | Zbl

[28] A. V. Fursikov, “The Cauchy problem for a second-order elliptic equation in a conditionally well-posed formulation”, Trans. Moscow Math. Soc., 1990 (1990), 139–176 | MR | Zbl

[29] A. Janushauskas, “Cauchy problem for one class of elliptic and degenerate equations”, Siberian Math. J., 8:4 (1967), 694–704 | DOI | MR | Zbl

[30] A. Janushauskas, “The Cauchy problem for the Laplace equation with three independent variables”, Siberian Math. J., 16:6 (1975), 1040–1048 | DOI | MR | Zbl

[31] Sh. Yarmukhamedov, “Representation of harmonic functions as potentials and the Cauchy problem”, Math. Notes, 83:5 (2008), 693–706 | DOI | DOI | MR | Zbl

[32] N. N. Tarkhanov, “Ob integralnom predstavlenii reshenii sistemy lineinykh differentsialnykh uravnenii 1-go poryadka v chastnykh proizvodnykh i nekotorykh ego prilozheniyakh”, Nekotorye voprosy mnogomernogo kompleksnogo analiza, In-t fiziki SO AN SSSR, Krasnoyarsk, 1980, 147–160 | MR | Zbl

[33] M. M. Lavrentev, “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR | Zbl

[34] A. V. Pokrovskii, “Removable singularities of solutions of linear uniformly elliptic second order equations”, Funct. Anal. Appl., 42:2 (2008), 116–125 | DOI | DOI | MR | Zbl