An exponential estimate for the cubic partial sums of multiple Fourier series
Izvestiya. Mathematics, Tome 83 (2019) no. 2, pp. 273-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an exponential integral estimate for the cubic partial sums of multiple Fourier series on sets of large measure. This estimate yields some new properties of Fourier series.
Keywords: multiple Fourier series, exponential integral estimates, cubic partial sums.
@article{IM2_2019_83_2_a5,
     author = {G. A. Karagulyan and H. Mkoyan},
     title = {An exponential estimate for the cubic partial sums of multiple {Fourier} series},
     journal = {Izvestiya. Mathematics},
     pages = {273--286},
     year = {2019},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a5/}
}
TY  - JOUR
AU  - G. A. Karagulyan
AU  - H. Mkoyan
TI  - An exponential estimate for the cubic partial sums of multiple Fourier series
JO  - Izvestiya. Mathematics
PY  - 2019
SP  - 273
EP  - 286
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a5/
LA  - en
ID  - IM2_2019_83_2_a5
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%A H. Mkoyan
%T An exponential estimate for the cubic partial sums of multiple Fourier series
%J Izvestiya. Mathematics
%D 2019
%P 273-286
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a5/
%G en
%F IM2_2019_83_2_a5
G. A. Karagulyan; H. Mkoyan. An exponential estimate for the cubic partial sums of multiple Fourier series. Izvestiya. Mathematics, Tome 83 (2019) no. 2, pp. 273-286. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a5/

[1] A. Zygmund, “On the convergence and summability of power series on the circle of convergence. II”, Proc. London Math. Soc. (2), 47 (1942), 326–350 | DOI | MR | Zbl

[2] L. V. Žižiašvili, “A generalization of a theorem of Marcinkiewicz”, Math. USSR-Izv., 2:5 (1968), 1065–1075 | DOI | MR | Zbl

[3] S. V. Konyagin, “On the divergence of a subsequence of the partial sums of multiple trigonometric Fourier series”, Proc. Steklov Inst. Math., 190 (1992), 107–121 | MR | Zbl

[4] R. D. Getsadze, “O raskhodimosti po mere kratnykh ryadov Fure”, Soobsch. AN Gruz. SSR, 122:2 (1986), 269–271 | MR | Zbl

[5] S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340 | DOI | MR | Zbl

[6] G. A. Karagulian, “Exponential estimates of the Calderón–Zygmund operator and related questions about Fourier series”, Math. Notes, 71:3 (2002), 362–373 | DOI | DOI | MR | Zbl

[7] K. I. Oskolkov, “Subsequences of Fourier sums of integrable functions”, Proc. Steklov Inst. Math., 167 (1986), 267–290 | MR | Zbl

[8] G. A. Karagulyan, “Exponential estimates for partial sums of Fourier series in the Walsh system and the rearranged Haar system”, J. Contemp. Math. Anal., 36:5 (2001), 19–30 | MR

[9] G. A. Karagulyan, “On $L^p$ convergence of orthogonal series on the sets of nearly full measure”, J. Contemp. Math. Anal., 29:2 (1994), 50–56 | MR | Zbl

[10] M. I. D'yachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171 | DOI | MR | Zbl

[11] P. Sjölin, “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. Mat., 9:1-2 (1971), 65–90 | DOI | MR | Zbl

[12] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl

[13] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl

[14] U. Goginava, L. Gogoladze, G. Karagulyan, “BMO-estimation and almost everywhere exponential summability of quadratic partial sums of double Fourier series”, Constr. Approx., 40:1 (2014), 105–120 | DOI | MR | Zbl