Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 251-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider weighted bounds for quasilinear integral operators of the form $$ \mathcal{K}^+f(x)=\biggl(\int_{0}^{x}\biggl|w(t)\int_{t}^{x} K(s,t)f(s)\,ds\biggr|^{r}\,dt\biggr)^{{1}/{r}} $$ from $L_{p,v}$ to $L_{q,u}$ on the set on non-negative and non-negative monotone functions $f$, where $u$, $v$ and $w$ are weight functions. Under the assumption that $0$, we obtain necessary and sufficient conditions for the validity of these bounds on the set of non-negative functions for the values of the parameters satisfying the conditions $1\leqslant p\leqslant q\infty$ and $0$, $p\geqslant 1$, and also on the cones of non-negative non-increasing and non-negative non-decreasing functions for $0$ and $1\leqslant p\infty$. Here it is assumed only that $K{(\,\cdot\,,\cdot\,)}\geqslant 0$. However, the criteria we obtain involve the norm of a linear integral operator from $L_{p,v}$ to $L_{r,w}$ with kernel $K{(\,\cdot\,,\cdot\,)}$.
Keywords: integral operator, inequality of Hardy type, weight function, monotone function.
Mots-clés : kernel
@article{IM2_2019_83_2_a4,
     author = {A. A. Kalybay and R. Oinarov},
     title = {Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions},
     journal = {Izvestiya. Mathematics },
     pages = {251--272},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/}
}
TY  - JOUR
AU  - A. A. Kalybay
AU  - R. Oinarov
TI  - Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 251
EP  - 272
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/
LA  - en
ID  - IM2_2019_83_2_a4
ER  - 
%0 Journal Article
%A A. A. Kalybay
%A R. Oinarov
%T Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
%J Izvestiya. Mathematics 
%D 2019
%P 251-272
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/
%G en
%F IM2_2019_83_2_a4
A. A. Kalybay; R. Oinarov. Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 251-272. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/

[1] R. Oinarov, A. Kalybay, “Three-parameter weighted Hardy type inequalities”, Banach J. Math. Anal., 2:2 (2008), 85–93 | DOI | MR | Zbl

[2] R. Oinarov, A. Kalybay, “Weighted inequalities for a class of semiadditive operators”, Ann. Funct. Anal., 6:4 (2015), 155–171 | DOI | MR | Zbl

[3] R. Oinarov, A. Kalybay, “Weighted estimates of a class of integral operators with three parameters”, J. Funct. Spaces, 2016 (2016), 1045459, 11 pp. | DOI | MR | Zbl

[4] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, xviii+357 pp. | DOI | MR | Zbl

[5] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plseň, 2007, 162 pp. | MR | Zbl

[6] V. Kokilashvili, A. Meskhi, L.-E. Persson, Weighted norm inequalities for integral transforms with product kernels, Math. Res. Dev. Ser., Nova Science Publishers, Inc., New York, 2010, xiv+342 pp. | MR | Zbl

[7] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113:1 (1991), 135–141 | DOI | MR | Zbl

[8] R. Oĭnarov, “Two-sided norm estimates for certain classes of integral operators”, Proc. Steklov Inst. Math., 204 (1994), 205–214 | MR | Zbl

[9] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. (2), 50:1 (1994), 105–120 | DOI | MR | Zbl

[10] Qinsheng Lai, “Weighted modular inequalities for Hardy type operators”, Proc. London Math. Soc. (3), 79:3 (1999), 649–672 | DOI | MR | Zbl

[11] R. Oinarov, “Boundedness and compactness of Volterra type integral operators”, Siberian Math. J., 48:5 (2007), 884–896 | DOI | MR | Zbl

[12] R. Oǐnarov, “Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits”, Siberian Math. J., 52:6 (2011), 1042–1055 | DOI | MR | Zbl

[13] A. Gogatishvili, R. Ch. Mustafayev, L.-E. Persson, “Some new iterated Hardy-type inequalities”, J. Funct. Spaces Appl., 2012 (2012), 734194, 30 pp. | DOI | MR | Zbl

[14] A. Gogatishvili, R. Mustafayev, L.-E. Persson, “Some new iterated Hardy-type inequalities: the case $\theta=1$”, J. Inequal. Appl., 2013 (2013), 515, 29 pp. | DOI | MR | Zbl

[15] A. Gogatishvili, R. Ch. Mustafayev, “Weighted iterated Hardy-type inequalities”, Math. Inequal. Appl., 20:3 (2017), 683–728 ; (2015), arXiv: 1503.04079 | DOI | MR | Zbl

[16] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for a class of sublinear operators”, Dokl. Math., 88:3 (2013), 721–723 | DOI | MR | Zbl

[17] D. V. Prokhorov, V. D. Stepanov, “On weighted Hardy inequalities in mixed norms”, Proc. Steklov Inst. Math., 283 (2013), 149–164 | DOI | MR | Zbl

[18] D. V. Prokhorov, V. D. Stepanov, “Estimates for a class of sublinear integral operators”, Dokl. Math., 89:3 (2014), 372–377 | DOI | DOI | MR | Zbl

[19] D. V. Prokhorov, V. D. Stepanov, “Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces”, Sb. Math., 207:8 (2016), 1159–1186 | DOI | DOI | MR | Zbl

[20] D. V. Prokhorov, “On a class of weighted inequalities containing quasilinear operators”, Proc. Steklov Inst. Math., 293 (2016), 272–287 | DOI | DOI | MR | Zbl

[21] G. E. Shambilova, “The weighted inequalities for a certain class of quasilinear integral operators on the cone of monotone functions”, Siberian Math. J., 55:4 (2014), 745–767 | DOI | MR | Zbl

[22] V. I. Burenkov, R. Oinarov, “Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morry-type space”, Math. Inequal. Appl., 16:1 (2013), 1–19 | DOI | MR | Zbl

[23] A. Kalybay, “On boundedness of the conjugate multidimensional Hardy operator from a Lebesgue space to a local Morrey-type space”, Int. J. Math. Anal. (Ruse), 8:11 (2014), 539–553 | DOI | MR

[24] M. I. Aguilar Cañestro, P. Ortega Salvador, C. Ramírez Torreblanca, “Weighted bilinear Hardy inequalities”, J. Math. Anal. Appl., 387:1 (2012), 320–334 | DOI | MR

[25] G. Bennett, K.-G. Grosse-Erdmann, “Weighted Hardy inequalities for decreasing sequences and functions”, Math. Ann., 334:3 (2006), 489–531 | DOI | MR | Zbl

[26] A. Gogatishvili, V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | DOI | MR | Zbl

[27] V. D. Stepanov, E. P. Ushakova, “Hardy operator with variable limits on monotone functions”, J. Funct. Spaces Appl., 1:1 (2003), 1–15 | DOI | MR | Zbl

[28] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | DOI | MR | Zbl