Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 251-272
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider weighted bounds for quasilinear integral operators of the form
$$
\mathcal{K}^+f(x)=\biggl(\int_{0}^{x}\biggl|w(t)\int_{t}^{x} K(s,t)f(s)\,ds\biggr|^{r}\,dt\biggr)^{{1}/{r}}
$$
from $L_{p,v}$ to $L_{q,u}$ on the set on non-negative and non-negative monotone functions $f$, where $u$, $v$ and $w$ are weight functions. Under the assumption that $0$, we obtain necessary and sufficient conditions for the validity of these bounds on the set of non-negative functions for the values of the parameters satisfying the conditions $1\leqslant p\leqslant q\infty$ and $0$, $p\geqslant 1$, and also on the cones of non-negative non-increasing and non-negative non-decreasing functions for $0$ and $1\leqslant p\infty$. Here it is assumed only that $K{(\,\cdot\,,\cdot\,)}\geqslant 0$. However, the criteria we obtain involve the norm of a linear integral operator from $L_{p,v}$ to $L_{r,w}$ with kernel $K{(\,\cdot\,,\cdot\,)}$.
Keywords:
integral operator, inequality of Hardy type, weight function, monotone function.
Mots-clés : kernel
Mots-clés : kernel
@article{IM2_2019_83_2_a4,
author = {A. A. Kalybay and R. Oinarov},
title = {Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions},
journal = {Izvestiya. Mathematics },
pages = {251--272},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/}
}
TY - JOUR AU - A. A. Kalybay AU - R. Oinarov TI - Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions JO - Izvestiya. Mathematics PY - 2019 SP - 251 EP - 272 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/ LA - en ID - IM2_2019_83_2_a4 ER -
%0 Journal Article %A A. A. Kalybay %A R. Oinarov %T Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions %J Izvestiya. Mathematics %D 2019 %P 251-272 %V 83 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/ %G en %F IM2_2019_83_2_a4
A. A. Kalybay; R. Oinarov. Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 251-272. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/