Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_2_a4, author = {A. A. Kalybay and R. Oinarov}, title = {Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions}, journal = {Izvestiya. Mathematics }, pages = {251--272}, publisher = {mathdoc}, volume = {83}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/} }
TY - JOUR AU - A. A. Kalybay AU - R. Oinarov TI - Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions JO - Izvestiya. Mathematics PY - 2019 SP - 251 EP - 272 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/ LA - en ID - IM2_2019_83_2_a4 ER -
%0 Journal Article %A A. A. Kalybay %A R. Oinarov %T Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions %J Izvestiya. Mathematics %D 2019 %P 251-272 %V 83 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/ %G en %F IM2_2019_83_2_a4
A. A. Kalybay; R. Oinarov. Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 251-272. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/
[1] R. Oinarov, A. Kalybay, “Three-parameter weighted Hardy type inequalities”, Banach J. Math. Anal., 2:2 (2008), 85–93 | DOI | MR | Zbl
[2] R. Oinarov, A. Kalybay, “Weighted inequalities for a class of semiadditive operators”, Ann. Funct. Anal., 6:4 (2015), 155–171 | DOI | MR | Zbl
[3] R. Oinarov, A. Kalybay, “Weighted estimates of a class of integral operators with three parameters”, J. Funct. Spaces, 2016 (2016), 1045459, 11 pp. | DOI | MR | Zbl
[4] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, xviii+357 pp. | DOI | MR | Zbl
[5] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plseň, 2007, 162 pp. | MR | Zbl
[6] V. Kokilashvili, A. Meskhi, L.-E. Persson, Weighted norm inequalities for integral transforms with product kernels, Math. Res. Dev. Ser., Nova Science Publishers, Inc., New York, 2010, xiv+342 pp. | MR | Zbl
[7] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113:1 (1991), 135–141 | DOI | MR | Zbl
[8] R. Oĭnarov, “Two-sided norm estimates for certain classes of integral operators”, Proc. Steklov Inst. Math., 204 (1994), 205–214 | MR | Zbl
[9] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. (2), 50:1 (1994), 105–120 | DOI | MR | Zbl
[10] Qinsheng Lai, “Weighted modular inequalities for Hardy type operators”, Proc. London Math. Soc. (3), 79:3 (1999), 649–672 | DOI | MR | Zbl
[11] R. Oinarov, “Boundedness and compactness of Volterra type integral operators”, Siberian Math. J., 48:5 (2007), 884–896 | DOI | MR | Zbl
[12] R. Oǐnarov, “Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits”, Siberian Math. J., 52:6 (2011), 1042–1055 | DOI | MR | Zbl
[13] A. Gogatishvili, R. Ch. Mustafayev, L.-E. Persson, “Some new iterated Hardy-type inequalities”, J. Funct. Spaces Appl., 2012 (2012), 734194, 30 pp. | DOI | MR | Zbl
[14] A. Gogatishvili, R. Mustafayev, L.-E. Persson, “Some new iterated Hardy-type inequalities: the case $\theta=1$”, J. Inequal. Appl., 2013 (2013), 515, 29 pp. | DOI | MR | Zbl
[15] A. Gogatishvili, R. Ch. Mustafayev, “Weighted iterated Hardy-type inequalities”, Math. Inequal. Appl., 20:3 (2017), 683–728 ; (2015), arXiv: 1503.04079 | DOI | MR | Zbl
[16] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for a class of sublinear operators”, Dokl. Math., 88:3 (2013), 721–723 | DOI | MR | Zbl
[17] D. V. Prokhorov, V. D. Stepanov, “On weighted Hardy inequalities in mixed norms”, Proc. Steklov Inst. Math., 283 (2013), 149–164 | DOI | MR | Zbl
[18] D. V. Prokhorov, V. D. Stepanov, “Estimates for a class of sublinear integral operators”, Dokl. Math., 89:3 (2014), 372–377 | DOI | DOI | MR | Zbl
[19] D. V. Prokhorov, V. D. Stepanov, “Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces”, Sb. Math., 207:8 (2016), 1159–1186 | DOI | DOI | MR | Zbl
[20] D. V. Prokhorov, “On a class of weighted inequalities containing quasilinear operators”, Proc. Steklov Inst. Math., 293 (2016), 272–287 | DOI | DOI | MR | Zbl
[21] G. E. Shambilova, “The weighted inequalities for a certain class of quasilinear integral operators on the cone of monotone functions”, Siberian Math. J., 55:4 (2014), 745–767 | DOI | MR | Zbl
[22] V. I. Burenkov, R. Oinarov, “Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morry-type space”, Math. Inequal. Appl., 16:1 (2013), 1–19 | DOI | MR | Zbl
[23] A. Kalybay, “On boundedness of the conjugate multidimensional Hardy operator from a Lebesgue space to a local Morrey-type space”, Int. J. Math. Anal. (Ruse), 8:11 (2014), 539–553 | DOI | MR
[24] M. I. Aguilar Cañestro, P. Ortega Salvador, C. Ramírez Torreblanca, “Weighted bilinear Hardy inequalities”, J. Math. Anal. Appl., 387:1 (2012), 320–334 | DOI | MR
[25] G. Bennett, K.-G. Grosse-Erdmann, “Weighted Hardy inequalities for decreasing sequences and functions”, Math. Ann., 334:3 (2006), 489–531 | DOI | MR | Zbl
[26] A. Gogatishvili, V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | DOI | MR | Zbl
[27] V. D. Stepanov, E. P. Ushakova, “Hardy operator with variable limits on monotone functions”, J. Funct. Spaces Appl., 1:1 (2003), 1–15 | DOI | MR | Zbl
[28] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | DOI | MR | Zbl