Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 251-272

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider weighted bounds for quasilinear integral operators of the form $$ \mathcal{K}^+f(x)=\biggl(\int_{0}^{x}\biggl|w(t)\int_{t}^{x} K(s,t)f(s)\,ds\biggr|^{r}\,dt\biggr)^{{1}/{r}} $$ from $L_{p,v}$ to $L_{q,u}$ on the set on non-negative and non-negative monotone functions $f$, where $u$, $v$ and $w$ are weight functions. Under the assumption that $0$, we obtain necessary and sufficient conditions for the validity of these bounds on the set of non-negative functions for the values of the parameters satisfying the conditions $1\leqslant p\leqslant q\infty$ and $0$, $p\geqslant 1$, and also on the cones of non-negative non-increasing and non-negative non-decreasing functions for $0$ and $1\leqslant p\infty$. Here it is assumed only that $K{(\,\cdot\,,\cdot\,)}\geqslant 0$. However, the criteria we obtain involve the norm of a linear integral operator from $L_{p,v}$ to $L_{r,w}$ with kernel $K{(\,\cdot\,,\cdot\,)}$.
Keywords: integral operator, inequality of Hardy type, weight function, monotone function.
Mots-clés : kernel
@article{IM2_2019_83_2_a4,
     author = {A. A. Kalybay and R. Oinarov},
     title = {Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions},
     journal = {Izvestiya. Mathematics },
     pages = {251--272},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/}
}
TY  - JOUR
AU  - A. A. Kalybay
AU  - R. Oinarov
TI  - Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 251
EP  - 272
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/
LA  - en
ID  - IM2_2019_83_2_a4
ER  - 
%0 Journal Article
%A A. A. Kalybay
%A R. Oinarov
%T Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions
%J Izvestiya. Mathematics 
%D 2019
%P 251-272
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/
%G en
%F IM2_2019_83_2_a4
A. A. Kalybay; R. Oinarov. Bounds for a~class of quasilinear integral operators on the set of non-negative and non-negative monotone functions. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 251-272. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a4/