Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 391-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of functions ${\varphi}_{r,n}(x)$ ($r=1,2,\dots$, $n=0,1,\dots$) that are Sobolev-orthonormal with respect to a scalar product of the form $\langle f,g\rangle= \sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+ \int_{a}^{b}f^{(r)}(x)g^{(r)}(x)\rho(x)\,dx$ and are generated by a given orthonormal system of functions $\varphi_{n}(x)$ ($n=0,1,\dots$). The Fourier series and sums with respect to the system $\varphi_{r,n}(x)$ ($r=1,2,\dots$, $n=0,1,\dots$) are shown to be a convenient and efficient tool for the approximate solution of the Cauchy problem for ordinary differential equations (ODEs).
Keywords: Sobolev-orthogonal systems, Cauchy problem for ODEs, systems generated by Haar functions, cosines or Chebyshev polynomials.
@article{IM2_2019_83_2_a10,
     author = {I. I. Sharapudinov},
     title = {Sobolev-orthogonal systems of functions and the {Cauchy} problem for {ODEs}},
     journal = {Izvestiya. Mathematics },
     pages = {391--412},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a10/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 391
EP  - 412
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a10/
LA  - en
ID  - IM2_2019_83_2_a10
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs
%J Izvestiya. Mathematics 
%D 2019
%P 391-412
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a10/
%G en
%F IM2_2019_83_2_a10
I. I. Sharapudinov. Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 391-412. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a10/

[1] I. I. Sharapudinov, “Sistemy funktsii, ortogonalnye po Sobolevu, porozhdennye ortogonalnymi funktsiyami”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 329–332

[2] I. I. Sharapudinov, “Sobolev-orthogonal systems of functions associated with an orthogonal system”, Izv. Math., 82:1 (2018), 212–244 | DOI | DOI | MR | Zbl

[3] A. Iserles, P. E. Koch, S. P. Nørsett, J. M. Sanz-Serna, “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl

[4] F. Marcellán, M. Alfaro, M. L. Rezola, “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | MR | Zbl

[5] H. G. Meijer, “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl

[6] K. H. Kwon, L. L. Littlejohn, “The orthogonality of the Laguerre polynomials $\{L_n^{-k}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2:1-4 (1995), 289–303 | MR | Zbl

[7] G. López, F. Marcellán, W. Van Assche, “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl

[8] K. H. Kwon, L. L. Littlejohn, “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl

[9] F. Marcellán, Yuan Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl

[10] I. I. Sharapudinov, “Mixed series in ultraspherical polynomials and their approximation properties”, Sb. Math., 194:3 (2003), 423–456 | DOI | DOI | MR | Zbl

[11] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, Izd-vo Dagestan. nauch. tsentra RAN, Makhachkala, 2004, 176 pp.

[12] L. N. Trefethen, Spectral methods in Matlab, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl

[13] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equation, unpublished text, 1996, 325 pp. http://people.maths.ox.ac.uk/trefethen/pdetext.html

[14] V. V. Solodovnikov, A. N. Dmitriev, N. D. Egupov, Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, M., 1986, 440 pp. | Zbl

[15] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481 pp. | MR | MR | Zbl | Zbl

[16] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Primenenie ryadov Chebysheva dlya integrirovaniya obyknovennykh differentsialnykh uravnenii”, Sib. elektron. matem. izv., 11 (2014), 517–531 | MR | Zbl

[17] D. S. Lukomskii, P. A. Terekhin, “Primenenie sistemy Khaara k chislennomu resheniyu zadachi Koshi dlya lineinogo differentsialnogo uravneniya pervogo poryadka”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 171–173

[18] D. S. Lukomskii, S. F. Lukomskii, P. A. Terekhin, “Primenenie sistemy Khaara k chislennomu resheniyu zadachi Koshi dlya lineinogo differentsialnogo uravneniya pervogo poryadka”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:2 (2016), 151–159 | DOI | MR | Zbl

[19] M. G. Magomed-Kasumov, “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 176–178

[20] I. I. Sharapudinov, M. G. Magomed-Kasumov, “On representation of a solution to the Cauchy problem by a Fourier series in Sobolev-orthogonal polynomials generated by Laguerre polynomials”, Differ. Equ., 54:1 (2018), 49–66 | DOI | DOI | MR | Zbl

[21] I. I. Sharapudinov, T. I. Sharapudinov, “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1 (2010), 112–139 | DOI | DOI | MR | Zbl

[22] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[23] I. I. Sharapudinov, G. N. Muratova, “Nekotorye svoistva $r$-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76

[24] G. Faber, “Über die Orthogonalfunktionen des Herrn Haar”, Deutsche Math.-Ver., 19 (1910), 104–112 | Zbl

[25] I. I. Sharapudinov, “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestan. elektron. matem. izv., 2016, no. 6, 1–24 | DOI

[26] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl