Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs
Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 391-412

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of functions ${\varphi}_{r,n}(x)$ ($r=1,2,\dots$, $n=0,1,\dots$) that are Sobolev-orthonormal with respect to a scalar product of the form $\langle f,g\rangle= \sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+ \int_{a}^{b}f^{(r)}(x)g^{(r)}(x)\rho(x)\,dx$ and are generated by a given orthonormal system of functions $\varphi_{n}(x)$ ($n=0,1,\dots$). The Fourier series and sums with respect to the system $\varphi_{r,n}(x)$ ($r=1,2,\dots$, $n=0,1,\dots$) are shown to be a convenient and efficient tool for the approximate solution of the Cauchy problem for ordinary differential equations (ODEs).
Keywords: Sobolev-orthogonal systems, Cauchy problem for ODEs, systems generated by Haar functions, cosines or Chebyshev polynomials.
@article{IM2_2019_83_2_a10,
     author = {I. I. Sharapudinov},
     title = {Sobolev-orthogonal systems of functions and the {Cauchy} problem for {ODEs}},
     journal = {Izvestiya. Mathematics },
     pages = {391--412},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a10/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 391
EP  - 412
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a10/
LA  - en
ID  - IM2_2019_83_2_a10
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs
%J Izvestiya. Mathematics 
%D 2019
%P 391-412
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a10/
%G en
%F IM2_2019_83_2_a10
I. I. Sharapudinov. Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs. Izvestiya. Mathematics , Tome 83 (2019) no. 2, pp. 391-412. http://geodesic.mathdoc.fr/item/IM2_2019_83_2_a10/