Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_1_a8, author = {Ya. Shitov}, title = {Tropical lower bound for extended formulations. {II.} {Deficiency} graphs of matrices}, journal = {Izvestiya. Mathematics }, pages = {184--195}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a8/} }
Ya. Shitov. Tropical lower bound for extended formulations. II. Deficiency graphs of matrices. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 184-195. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a8/
[1] A. I. Barvinok, “Two algorithmic results for the traveling salesman problem”, Math. Oper. Res., 21:1 (1996), 65–84 | DOI | MR | Zbl
[2] M. Develin, “Tropical secant varieties of linear spaces”, Discrete Comput. Geom., 35:1 (2006), 117–129 | DOI | MR | Zbl
[3] M. Develin, F. Santos, B. Sturmfels, “On the rank of a tropical matrix”, Combinatorial and computational geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge, 2005, 213–242 | MR | Zbl
[4] Ya. Shitov, “Tropical lower bounds for extended formulations”, Math. Program., 153:1, Ser. B (2015), 67–74 | DOI | MR | Zbl
[5] E. Engeler, Metamathematik der Elementarmathematik, Hochschultext, Springer-Verlag, Berlin, 1983, ii+132 pp. | DOI | MR | MR | Zbl | Zbl
[6] F. J. Rayner, “Algebraically closed fields analogous to fields of Puiseux series”, J. London Math. Soc. (2), 8:3 (1974), 504–506 | DOI | MR | Zbl
[7] M. Yannakakis, “Expressing combinatorial optimization problems by linear programs”, J. Comput. System Sci., 43:3 (1991), 441–466 | DOI | MR | Zbl
[8] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, R. de Wolf, “Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds”, STOC '12 Proceedings of the 44th annual ACM symposium on theory of computing, ACM, New York, 2012, 95–106 | DOI | MR | Zbl
[9] T. Rothvoss, “The matching polytope has exponential extension complexity”, STOC '14 Proceedings of the 46th annual ACM symposium on theory of computing, ACM, New York, 2014, 263–272 | DOI | MR | Zbl
[10] N. Gillis, F. Glineur, “On the geometric interpretation of the nonnegative rank”, Linear Algebra Appl., 437:11 (2012), 2685–2712 | DOI | MR | Zbl
[11] S. Fiorini, T. Rothvoß, H. R. Tiwary, “Extended formulations for polygons”, Discrete Comput. Geom., 48:3 (2012), 658–668 | DOI | MR | Zbl
[12] A. V. Ryazanov, Otsenki neotritsatelnykh i poluopredelennykh rangov matrits, Doklad v ramkakh molodezhnoi shkoly “Upravlenie, informatsiya i optimizatsiya”, M., 2017
[13] Ya. N. Shitov, Lineinaya algebra nad polukoltsami, Diss. ... dokt. fiz.-matem. nauk, MGU im. M. V. Lomonosova, M., 2015, 302 pp.
[14] J. Gouveia, R. Z. Robinson, R. R. Thomas, “Polytopes of minimum positive semidefinite rank”, Discrete Comput. Geom., 50:3 (2013), 679–699 | DOI | MR | Zbl
[15] S. Fiorini, V. Kaibel, K. Pashkovich, D. O. Theis, “Combinatorial bounds on nonnegative rank and extended formulations”, Discrete Math., 313:1 (2013), 67–83 | DOI | MR | Zbl
[16] Ya. Shitov, “The complexity of tropical matrix factorization”, Adv. Math., 254 (2014), 138–156 | DOI | MR | Zbl
[17] D. Cartwright, M. Chan, “Three notions of tropical rank for symmetric matrices”, Combinatorica, 32:1 (2012), 55–84 | DOI | MR | Zbl
[18] M. R. Garey, D. S. Johnson, Computers and intractability. A guide to the theory of NP-completeness, Ser. Books Math. Sci., W. H. Freeman and Co., San Francisco, Calif., 1979, x+338 pp. | MR | MR | Zbl | Zbl
[19] E. L. Lawler, “A note on the complexity of the chromatic number problem”, Information Processing Lett., 5:3 (1976), 66–67 | DOI | MR | Zbl
[20] Ya. Shitov, “Detecting matrices of combinatorial rank three”, J. Combin. Theory Ser. A, 126 (2014), 166–176 | DOI | MR | Zbl
[21] N. K. Vereschagin, Lektsii po teorii informatsii, 158 pp. https://docplayer.ru/53661662-Lekcii-po-teorii-informacii-n-k-vereshchagin.html
[22] L. B. Beasley, “Isolation number versus Boolean rank”, Linear Algebra Appl., 436:9 (2012), 3469–3474 | DOI | MR | Zbl
[23] Ya. Shitov, “Mixtures of star trees and deficiency graphs”, European J. Combin., 44, Part A (2015), 140–143 | DOI | MR | Zbl
[24] J. Culberson, I. Gent, “Frozen development in graph coloring”, Theoret. Comput. Sci., 265:1-2 (2001), 227–264 | DOI | MR | Zbl
[25] J. Gouveia, P. A. Parrilo, R. R. Thomas, “Lifts of convex sets and cone factorizations”, Math. Oper. Res., 38:2 (2013), 248–264 | DOI | MR | Zbl
[26] Ya. Shitov, “Studying non-negative factorizations with tools from linear algebra over a semiring”, Comm. Algebra, 43:10 (2015), 4359–4366 | DOI | MR | Zbl
[27] A. Padrol, J. Pfeifle, “Polygons as sections of higher-dimensional polytopes”, Electron. J. Combin., 22:1 (2015), 1.24, 16 pp. | MR | Zbl
[28] K. Pashkovich, S. Weltge, “Hidden vertices in extensions of polytopes”, Oper. Res. Lett., 43:2 (2015), 161–164 | DOI | MR | Zbl
[29] Ya. Shitov, “An upper bound for nonnegative rank”, J. Combin. Theory Ser. A, 122 (2014), 126–132 | DOI | MR | Zbl
[30] A. Vandaele, N. Gillis, F. Glineur, D. Tuyttens, “Heuristics for exact nonnegative matrix factorization”, J. Global Optim., 65:2 (2016), 369–400 ; arXiv: 1411.7245 | DOI | MR | Zbl
[31] A. Padrol, “Extension complexity of polytopes with few vertices or facets”, SIAM J. Discrete Math., 30:4 (2016), 2162–2176 ; arXiv: 1602.06894 | DOI | MR | Zbl
[32] Ya. Shitov, Sublinear extensions of polygons, arXiv: 1412.0728
[33] Ya. Shitov, “On Boolean matrices with full factor rank”, Sb. Math., 204:11 (2013), 1691–1699 | DOI | DOI | MR | Zbl
[34] Ya. Shitov, A separation between tropical matrix ranks, arXiv: 1712.03071