Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_1_a7, author = {M. E. Changa}, title = {On integers whose number of prime divisors belongs to a~given residue class}, journal = {Izvestiya. Mathematics }, pages = {173--183}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/} }
M. E. Changa. On integers whose number of prime divisors belongs to a~given residue class. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 173-183. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/
[1] K. Prachar, Primzahlverteilung, Grundlehren Math. Wiss., 91, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. | MR | MR | Zbl | Zbl
[2] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2 Bände, B. G. Teubner, Leipzig–Berlin, 1909, x+ix+961 pp. | MR | Zbl
[3] A. A. Karatsuba, “A property of the set of prime numbers”, Russian Math. Surveys, 66:2 (2011), 209–220 | DOI | DOI | MR | Zbl
[4] A. A. Karatsuba, “A property of the set of primes as a multiplicative basis of the natural numbers”, Dokl. Math., 84:1 (2011), 467–470 | DOI | MR | Zbl
[5] I. M. Vinogradov, “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7(49):2 (1940), 365–372 | MR | Zbl
[6] M. E. Changa, “Primes in special intervals and additive problems with such numbers”, Math. Notes, 73:3 (2003), 389–401 | DOI | DOI | MR | Zbl
[7] C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646 | DOI | MR | Zbl
[8] M. E. Changa, “On the quantity of numbers of special form depending on the parity of the number of their different prime divisors”, Math. Notes, 97:6 (2015), 941–945 | DOI | DOI | MR | Zbl
[9] M. E. Changa, “A problem involving integers all of whose prime divisors belong to given arithmetic progressions”, Russian Math. Surveys, 71:4 (2016), 790–792 | DOI | DOI | MR | Zbl
[10] M. E. Changa, Metody analiticheskoi teorii chisel, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2013, 228 pp.
[11] A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | DOI | MR | MR | Zbl | Zbl
[12] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951, vi+346 pp. | MR | Zbl
[13] E. T. Whittaker, G. N. Watson, A course of modern analysis, 4th ed., reprinted, Cambridge Univ. Press, Cambridge, 1962, vii+608 pp. | MR | Zbl | Zbl
[14] M. E. Changa, “On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions”, Izv. Math., 69:2 (2005), 423–438 | DOI | DOI | MR | Zbl
[15] M. E. Changa, “Numbers whose prime divisors lie in special intervals”, Izv. Math., 67:4 (2003), 837–848 | DOI | DOI | MR | Zbl