On integers whose number of prime divisors belongs to a~given residue class
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 173-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider positive integers whose number of prime divisors is congruent to $l$ modulo $k$. In this case, the calculation of prime divisors can be made either with or without taking into account the multiplicity, and the divisors themselves can be subjected to the additional requirement of belonging to some special set. We show that for $k\geqslant3$, the distribution pattern of these numbers, in dependence on the value of $l$, differs fundamentally from that in the case $k=2$, which was studied earlier.
Keywords: prime divisors
Mots-clés : Perron's formula.
@article{IM2_2019_83_1_a7,
     author = {M. E. Changa},
     title = {On integers whose number of prime divisors belongs to a~given residue class},
     journal = {Izvestiya. Mathematics },
     pages = {173--183},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/}
}
TY  - JOUR
AU  - M. E. Changa
TI  - On integers whose number of prime divisors belongs to a~given residue class
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 173
EP  - 183
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/
LA  - en
ID  - IM2_2019_83_1_a7
ER  - 
%0 Journal Article
%A M. E. Changa
%T On integers whose number of prime divisors belongs to a~given residue class
%J Izvestiya. Mathematics 
%D 2019
%P 173-183
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/
%G en
%F IM2_2019_83_1_a7
M. E. Changa. On integers whose number of prime divisors belongs to a~given residue class. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 173-183. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/

[1] K. Prachar, Primzahlverteilung, Grundlehren Math. Wiss., 91, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. | MR | MR | Zbl | Zbl

[2] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2 Bände, B. G. Teubner, Leipzig–Berlin, 1909, x+ix+961 pp. | MR | Zbl

[3] A. A. Karatsuba, “A property of the set of prime numbers”, Russian Math. Surveys, 66:2 (2011), 209–220 | DOI | DOI | MR | Zbl

[4] A. A. Karatsuba, “A property of the set of primes as a multiplicative basis of the natural numbers”, Dokl. Math., 84:1 (2011), 467–470 | DOI | MR | Zbl

[5] I. M. Vinogradov, “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7(49):2 (1940), 365–372 | MR | Zbl

[6] M. E. Changa, “Primes in special intervals and additive problems with such numbers”, Math. Notes, 73:3 (2003), 389–401 | DOI | DOI | MR | Zbl

[7] C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646 | DOI | MR | Zbl

[8] M. E. Changa, “On the quantity of numbers of special form depending on the parity of the number of their different prime divisors”, Math. Notes, 97:6 (2015), 941–945 | DOI | DOI | MR | Zbl

[9] M. E. Changa, “A problem involving integers all of whose prime divisors belong to given arithmetic progressions”, Russian Math. Surveys, 71:4 (2016), 790–792 | DOI | DOI | MR | Zbl

[10] M. E. Changa, Metody analiticheskoi teorii chisel, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2013, 228 pp.

[11] A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | DOI | MR | MR | Zbl | Zbl

[12] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951, vi+346 pp. | MR | Zbl

[13] E. T. Whittaker, G. N. Watson, A course of modern analysis, 4th ed., reprinted, Cambridge Univ. Press, Cambridge, 1962, vii+608 pp. | MR | Zbl | Zbl

[14] M. E. Changa, “On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions”, Izv. Math., 69:2 (2005), 423–438 | DOI | DOI | MR | Zbl

[15] M. E. Changa, “Numbers whose prime divisors lie in special intervals”, Izv. Math., 67:4 (2003), 837–848 | DOI | DOI | MR | Zbl