On integers whose number of prime divisors belongs to a~given residue class
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 173-183

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider positive integers whose number of prime divisors is congruent to $l$ modulo $k$. In this case, the calculation of prime divisors can be made either with or without taking into account the multiplicity, and the divisors themselves can be subjected to the additional requirement of belonging to some special set. We show that for $k\geqslant3$, the distribution pattern of these numbers, in dependence on the value of $l$, differs fundamentally from that in the case $k=2$, which was studied earlier.
Keywords: prime divisors
Mots-clés : Perron's formula.
@article{IM2_2019_83_1_a7,
     author = {M. E. Changa},
     title = {On integers whose number of prime divisors belongs to a~given residue class},
     journal = {Izvestiya. Mathematics },
     pages = {173--183},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/}
}
TY  - JOUR
AU  - M. E. Changa
TI  - On integers whose number of prime divisors belongs to a~given residue class
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 173
EP  - 183
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/
LA  - en
ID  - IM2_2019_83_1_a7
ER  - 
%0 Journal Article
%A M. E. Changa
%T On integers whose number of prime divisors belongs to a~given residue class
%J Izvestiya. Mathematics 
%D 2019
%P 173-183
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/
%G en
%F IM2_2019_83_1_a7
M. E. Changa. On integers whose number of prime divisors belongs to a~given residue class. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 173-183. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a7/