Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_1_a6, author = {T. N. Fomenko}, title = {Fixed points and coincidences of families of mappings between}, journal = {Izvestiya. Mathematics }, pages = {151--172}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a6/} }
T. N. Fomenko. Fixed points and coincidences of families of mappings between. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 151-172. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a6/
[1] T. N. Fomenko, “Approximation of coincidence points and common fixed points of a collection of mappings of metric spaces”, Math. Notes, 86:1 (2009), 107–120 | DOI | DOI | MR | Zbl
[2] T. N. Fomenko, “Cascade search of the coincidence set of collections of multivalued mappings”, Math. Notes, 86:2 (2009), 276–281 | DOI | DOI | MR | Zbl
[3] T. N. Fomenko, “Cascade search principle and its applications to the coincidence problems of $n$ one-valued or multi-valued mappings”, Topology Appl., 157:4 (2010), 760–773 | DOI | MR | Zbl
[4] T. N. Fomenko, “Browder functions and theorems on fixed points and coincidences”, Izv. Math., 79:5, 1087–1095 | DOI | DOI | MR | Zbl
[5] T. N. Fomenko, “Cascade search for preimages and coincidences: global and local versions”, Math. Notes, 93:1 (2013), 172–186 | DOI | DOI | MR | Zbl
[6] T. N. Fomenko, “Functionals strictly subjected to convergent series and search for singularities of mappings”, J. Fixed Point Theory Appl., 14:1 (2013), 21–40 | DOI | MR | Zbl
[7] S. R. Gainullova, T. N. Fomenko, “Functionals subordinate to converging series and some applications”, Math. Notes, 96:2 (2014), 294–297 | DOI | DOI | MR | Zbl
[8] T. N. Fomenko, “Functionals strictly subordinate to series and search for solutions of equations”, Dokl. Math., 88:3 (2013), 748–750 | DOI | DOI | MR | Zbl
[9] T. N. Fomenko, “Approximation theorems in metric spaces and functionals strictly subordinated to convergent series”, Topology Appl., 179 (2015), 81–90 | DOI | MR | Zbl
[10] S. Abian, A. B. Brown, “A theorem on partially ordered sets, with applications to fixed point theorems”, Canad. J. Math., 13 (1961), 78–82 | DOI | MR | Zbl
[11] Handbook of metric fixed point theory, eds. W. A. Kirk, B. Sims, Kluwer Acad. Publ., Dordrecht, 2001, xiv+703 pp. | DOI | MR | Zbl
[12] R. E. Smithson, “Fixed points of order preserving multifunctions”, Proc. Amer. Math. Soc., 28 (1971), 304–310 | DOI | MR | Zbl
[13] E. Zermelo, “Beweis, daß jede Menge wohlgeordnet werden kann”, Math. Ann., 59:4 (1904), 514–516 | DOI | MR | Zbl
[14] E. Zermelo, “Neuer Beweis für die Möglichkeit einer Wohlordnung”, Math. Ann., 65:1 (1907), 107–128 | DOI | MR | Zbl
[15] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points of set-valued mappings in partially ordered spaces”, Dokl. Math., 88:3 (2013), 727–729 | DOI | DOI | MR | Zbl
[16] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology Appl., 201 (2016), 330–343 | DOI | MR | Zbl
[17] T. N. Fomenko, D. A. Podoprikhin, “Fixed points and coincidences of mappings of partially ordered sets”, J. Fixed Point Theory Appl., 18:4 (2016), 823–842 | DOI | MR | Zbl
[18] D. A. Podoprikhin, T. N. Fomenko, “On coincidences of families of mappings on ordered sets”, Dokl. Math., 94:3 (2016), 620–622 | DOI | DOI | MR | Zbl
[19] T. N. Fomenko, D. A. Podoprikhin, “Common fixed points and coincidences of mapping families on partially ordered sets”, Topology Appl., 221 (2017), 275–285 | DOI | MR | Zbl
[20] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[21] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | DOI | MR | MR | Zbl | Zbl
[22] J. Palis, Jr., W. de Melo, Geometric theory of dynamical systems. An introduction, Transl. from the Portuguese, Springer-Verlag, New York–Berlin, 1982, xii+198 pp. | MR | MR | Zbl
[23] K. Schmidt, Dynamical systems of algebraic origin, Progr. Math., 128, Birkhäuser Verlag, Basel, 1995, xviii+310 pp. | MR | Zbl
[24] T. N. Fomenko, K. S. Yastrebov, “Convergence of Noor-type iteration scheme with errors in a convex cone metric space”, Moscow Univ. Math. Bull., 71:1 (2016), 39–42 | DOI | MR | Zbl
[25] S. Itoh, W. Takahashi, “The common fixed point theory of singlevalued mappings and multivalued mappings”, Pacific J. Math., 79:2 (1978), 493–508 | DOI | MR | Zbl
[26] M. Berzig, “Coincidence and common fixed point results on metric spaces endowed with an arbitrary binary relation and applications”, J. Fixed Point Theory Appl., 12:1-2 (2012), 221–238 | DOI | MR | Zbl
[27] P. D. Proinov, I. A. Nikolova, “Approximation of point of coincidence and common fixed points of quasi-contraction mappings using the Jungck iteration scheme”, Appl. Math. Comput., 264 (2015), 359–365 | DOI | MR | Zbl
[28] V. Berinde, “Common fixed points of noncommuting almost contractions in cone metric spaces”, Math. Commun., 15:1 (2010), 229–241 | MR | Zbl
[29] M. Abbas, V. Rakočević, A. Iqbal, “Coincidence and common fixed points of Perov type generalized Ćirić-contraction mappings”, Mediterr. J. Math., 13:5 (2016), 3537–3555 | DOI | MR | Zbl
[30] R. E. Smithson, “A common fixed point theorem for nested spaces”, Pacific J. Math., 82:2 (1979), 533–537 | DOI | MR | Zbl
[31] D. Turkoglu, “Some common fixed point theorems for weakly compatible mappings in uniform spaces”, Acta Math. Hungar., 128:1-2 (2010), 165–174 | DOI | MR | Zbl
[32] M. L. Diviccaro, “Commutative multifunctions in posets with minimum common fixed point”, Int. Math. Forum, 5:13-16 (2010), 755–759 | DOI | MR | Zbl
[33] T. Nazir, S. Silvestrov, “Common fixed point results for family of generalized multivalued $F$-contraction mappings in ordered metric spaces”, Engineering mathematics II, Springer Proc. Math. Stat., 179, Springer, Cham, 2016, 419–432 ; arXiv: 1606.05299 | DOI | MR | Zbl
[34] P. Cousot, R. Cousot, “Constructive versions of Tarski's fixed point theorems”, Pacific J. Math., 82:1 (1979), 43–57 | DOI | MR | Zbl
[35] J. S. W. Wong, “Common fixed points of commuting monotone mappings”, Canad. J. Math., 19 (1967), 617–620 | DOI | MR | Zbl
[36] R. DeMarr, “Common fixed points for commuting contraction mappings”, Pacific J. Math., 13:4 (1963), 1139–1141 | DOI | MR | Zbl
[37] E. Karapinar, U. Yüksel, “Some common fixed point theorems in partial metric spaces”, J. Appl. Math., 2011 (2011), 263621, 16 pp. | DOI | MR | Zbl
[38] G. F. Jungck, “Common fixed point theorems for compatible self-maps of Hausdorff topological spaces”, Fixed Point Theory Appl., 2005:3 (2005), 355–363 | DOI | MR | Zbl
[39] L. Gajić, V. Rakočević, “Quasicontraction nonself-mappings on convex metric spaces and common fixed point theorems”, Fixed Point Theory Appl., 2005:3 (2005), 365–375 | DOI | MR | Zbl
[40] V. V. Popova, Obschie nepodvizhnye tochki semeistva monotonnykh operatorov, Avtoreferat diss. ... kand. fiz.-matem. nauk, Gos. ped. un-t im. A. I. Gertsena, SPb., 1995, 12 pp.
[41] V. V. Popova, “Obschie nepodvizhnye tochki monotonnykh operatorov, imeyuschikh minorantu”, Dep. v VINITI, No 668-84, RZhMat, 1984, 5B906, 6 pp.
[42] V. V. Popova, “Obschie nepodvizhnye tochki operatorov vpolne medlennogo rosta”, Issledovaniya po teorii priblizhenii, Sb. nauch. tr., UrGU, Sverdlovsk, 1988, 86–55
[43] V. V. Popova, “O suschestvovanii obschikh nepodvizhnykh tochek monotonnykh operatorov”, Dep. v VINITI, No I6600-83, RZhMat, 1983, 12B1216, 14 pp.
[44] I.A. Bakhtin, V. V. Popova, “Suschestvovanie obschikh nepodvizhnykh tochek monotonnykh poryadkovo nerastyagivayuschikh ne kommutiruyuschikh operatorov”, Dep. v VINITI, No 2297-V 92, RZhMat, 1992, IBI69, 16 pp.
[45] I. A. Bakhtin, V. V. Popova, “Suschestvovanie obschikh nepodvizhnykh tochek monotonnykh ne kommutiruyuschikh operatorov”, Dep. v VINITI, No 2299-V 92, RZhMat, 1992, IBI79, 27 pp.
[46] M. G. Kreĭn, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation, 26, Amer. Math. Soc., New York, 1950, 128 pp. | MR | MR | Zbl
[47] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. | MR | MR | Zbl | Zbl
[48] A. Yu. Volovikov, “Coincidence points of maps of $\mathbb Z_p^n$-spaces”, Izv. Math., 69:5 (2005), 913–962 | DOI | DOI | MR | Zbl
[49] R. N. Karasev, A. Yu. Volovikov, “Knaster's problem for almost $(Z_{p})^{k}$-orbits”, Topology Appl., 157:5 (2010), 941–945 | DOI | MR | Zbl
[50] E. Bishop, R. R. Phelps, “The support functionals of a convex set”, Convexity, Proc. Sympos. Pure Math., VII, Amer. Math. Soc., Providence, R.I., 1963, 27–35 | DOI | MR | Zbl
[51] R. DeMarr, “Partially ordered spaces and metric spaces”, Amer. Math. Monthly, 72:6 (1965), 628–631 | DOI | MR | Zbl
[52] I. Ekeland, “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl
[53] A. Brøndsted, “On a lemma of Bishop and Phelps”, Pacific J. Math., 55:2 (1974), 335–341 | DOI | MR | Zbl
[54] J. Caristi, “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl
[55] T. N. Fomenko, “Fixed-point and coincidence theorems in ordered sets”, Dokl. Math., 95:3 (2017), 264–266 | DOI | DOI | MR | Zbl
[56] T. N. Fomenko, “Brondsted order in a metric space and generalizations of Caristi theorem”, Moscow Univ. Math. Bull., 72:5 (2017), 199–202 | DOI | MR | Zbl
[57] S. B. Nadler, Jr., “Multi-valued contraction mappings”, Pacific J. Math., 30:2 (1969), 475–488 | DOI | MR | Zbl
[58] T. N. Fomenko, “Sokhranenie suschestvovaniya tochki sovpadeniya pri nekotorykh diskretnykh preobrazovaniyakh pary otobrazhenii metricheskikh prostranstv”, Tr. IMM UrO RAN, 23, no. 4, 2017, 292–300 | DOI | MR
[59] J. R. Jachymski, “Some consequences of fundamental ordering principles in metric fixed point theory”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 51:2 (1997), 123–134 | MR | Zbl
[60] J. R. Jachymski, “Caristi's fixed point theorem and selections of set-valued contractions”, J. Math. Anal. Appl., 227:1 (1998), 55–67 | DOI | MR | Zbl
[61] W. A. Kirk, “Caristi's fixed point theorem and metric convexity”, Colloq. Math., 36:1 (1976), 81–86 | DOI | MR | Zbl
[62] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl
[63] B. D. Gelman, V. K. Musienko, “O teoreme A. V. Arutyunova”, Aktualnye problemy matematiki i informatiki. Trudy matematicheskogo fakulteta, 2010, no. 2, 81–91