Completion of the classification of generic singularities of geodesic
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 104-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the final paper in a series devoted to generic singularities of geodesic flows for two-dimensional pseudo-Riemannian metrics of changing signature and metrics induced from the Euclidean metric of the ambient space on surfaces with a cuspidal edge. We study the local phase portraits and the properties of geodesics at degenerate points of a certain type. This completes the list of singularities in codimensions $1$ and $2$.
Keywords: pseudo-Riemannian metric, geodesic, singular point, normal form, invariant manifold.
@article{IM2_2019_83_1_a4,
     author = {N. G. Pavlova and A. O. Remizov},
     title = {Completion of the classification of generic singularities of geodesic},
     journal = {Izvestiya. Mathematics },
     pages = {104--123},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a4/}
}
TY  - JOUR
AU  - N. G. Pavlova
AU  - A. O. Remizov
TI  - Completion of the classification of generic singularities of geodesic
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 104
EP  - 123
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a4/
LA  - en
ID  - IM2_2019_83_1_a4
ER  - 
%0 Journal Article
%A N. G. Pavlova
%A A. O. Remizov
%T Completion of the classification of generic singularities of geodesic
%J Izvestiya. Mathematics 
%D 2019
%P 104-123
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a4/
%G en
%F IM2_2019_83_1_a4
N. G. Pavlova; A. O. Remizov. Completion of the classification of generic singularities of geodesic. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 104-123. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a4/

[1] A. O. Remizov, “Geodesics on 2-surfaces with pseudo-Riemannian metric: singularities of changes of signature”, Sb. Math., 200:3 (2009), 385–403 | DOI | DOI | MR | Zbl

[2] A. O. Remizov, “Singularities of a geodesic flow on surfaces with a cuspidal edge”, Proc. Steklov Inst. Math., 268 (2010), 248–257 | DOI | MR | Zbl

[3] R. Ghezzi, A. O. Remizov, “On a class of vector fields with discontinuities of divide-by-zero type and its applications to geodesics in singular metrics”, J. Dyn. Control Syst., 18:1 (2012), 135–158 | DOI | MR | Zbl

[4] A. O. Remizov, “On the local and global properties of geodesics in pseudo-Riemannian metrics”, Differential Geom. Appl., 39 (2015), 36–58 | DOI | MR | Zbl

[5] A. O. Remizov, F. Tari, “Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics”, Geom. Dedicata, 185:1 (2016), 131–153 | DOI | MR | Zbl

[6] N. G. Pavlova, A. O. Remizov, “A brief survey on singularities of geodesic flows in smooth signature changing metrics on 2-surfaces”, Singularities and foliations. Geometry, topology and applications, Springer Proc. Math. Stat., 222, Springer, Cham, 2018, 135–155 | DOI | MR

[7] B. Kruglikov, “Point classification of second order ODEs: Tresse classification revisited and beyond”, Differential equations: geometry, symmetries and integrability, Abel Symp., 5, Springer, Berlin, 2009, 199–221 | DOI | MR | Zbl

[8] V. A. Yumaguzhin, “Differential invariants of second order ODEs. I”, Acta Appl. Math., 109:1 (2010), 283–313 | DOI | MR | Zbl

[9] F. Dumortier, S. Ibáñez, “Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields”, J. Differential Equations, 127:2 (1996), 590–647 | DOI | MR | Zbl

[10] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., 25, 2nd ed., Springer-Verlag, New York, 1988, xiv+351 pp. | DOI | MR | MR | Zbl | Zbl

[11] V. I. Arnol'd, Yu. S. Il'yashenko, “Ordinary differential equations”, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer-Verlag, Berlin, 1988, 1–148 | MR | Zbl

[12] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp. | DOI | MR | Zbl

[13] R. Roussarie, Modèles locaux de champs et de formes, Astérisque, 30, Soc. Math. France, Paris, 1975, 181 pp. | MR | Zbl

[14] V. I. Arnol'd, A. B. Givental', “Symplectic geometry”, Dynamical systems IV, Encyclopaedia Math. Sci., Springer, Berlin, 1990, 5–131 | MR | MR | Zbl | Zbl

[15] J. Martinet, “Sur les singularités des formes différentielles”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 95–178 | DOI | MR | Zbl

[16] A. O. Remizov, “Multidimensional Poincaré construction and singularities of lifted fields for implicit differential equations”, J. Math. Sci. (N. Y.), 151:6 (2008), 3561–3602 | DOI | MR | Zbl

[17] F. Takens, “Partially hyperbolic fixed points”, Topology, 10:2 (1971), 133–147 | DOI | MR | Zbl

[18] S. M. Voronin, “The Darboux–Whitney theorem and related questions”, Nonlinear Stokes phenomena, Adv. Soviet Math., 14, Amer. Math. Soc., Providence, RI, 1993, 139–233 | MR | Zbl

[19] S. M. Voronin, “Analiticheskaya klassifikatsiya rostkov golomorfnykh otobrazhenii s neizolirovannymi nepodvizhnymi tochkami i postoyannymi multiplikatorami i ee prilozheniya”, Vestn. Chelyabinskogo gos. un-ta. Cer. 3, 1999, no. 2(5), 12–30 | MR

[20] J.-C. Yoccoz, “Linéarisation des germes de difféomorphismes holomorphes de $(\mathbf C, 0)$”, C. R. Acad. Sci. Paris Sér. I Math., 306:1 (1988), 55–58 | MR | Zbl

[21] J. Sotomayor, M. Zhitomirskii, “Impasse singularities of differential systems of the form $A(x)x'=F(x)$”, J. Differential Equations, 169:2 (2001), 567–587 | DOI | MR | Zbl

[22] N. G. Pavlova, A. O. Remizov, “A complete classification of generic singularities of geodesic flows on 2-surfaces with pseudo-Riemannian metrics”, Russian Math. Surveys, 72:3 (2017), 577–579 | DOI | DOI | MR | Zbl

[23] M. Gromov, “Sign and geometric meaning of curvature”, Rend. Sem. Mat. Fis. Milano, 61 (1991), 9–123 | DOI | MR | Zbl | Zbl

[24] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl

[25] Ph. Hartman, Ordinary differential equations, Reprint of the 2nd ed., Birkhäuser, Boston, Mass., 1982, xv+612 pp. | MR | MR | Zbl | Zbl

[26] J. W. Bruce, G. J. Fletcher, F. Tari, “Bifurcations of implicit differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 130:3 (2000), 485–506 | MR | Zbl

[27] J. W. Bruce, D. L. Fidal, “On binary differential equations and umbilics”, Proc. Roy. Soc. Edinburgh Sect. A, 111:1-2 (1989), 147–168 | DOI | MR | Zbl

[28] J. W. Bruce, F. Tari, “On binary differential equations”, Nonlinearity, 8:2 (1995), 255–271 | DOI | MR | Zbl