Completion of the classification of generic singularities of geodesic
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 104-123
Voir la notice de l'article provenant de la source Math-Net.Ru
This is the final paper in a series devoted to generic singularities
of geodesic flows for two-dimensional pseudo-Riemannian metrics of changing
signature and metrics induced from the Euclidean metric of the ambient space
on surfaces with a cuspidal edge. We study the local phase portraits
and the properties of geodesics at degenerate points of a certain type.
This completes the list of singularities in codimensions $1$ and $2$.
Keywords:
pseudo-Riemannian metric, geodesic, singular point, normal form, invariant manifold.
@article{IM2_2019_83_1_a4,
author = {N. G. Pavlova and A. O. Remizov},
title = {Completion of the classification of generic singularities of geodesic},
journal = {Izvestiya. Mathematics },
pages = {104--123},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a4/}
}
N. G. Pavlova; A. O. Remizov. Completion of the classification of generic singularities of geodesic. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 104-123. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a4/