Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_1_a4, author = {N. G. Pavlova and A. O. Remizov}, title = {Completion of the classification of generic singularities of geodesic}, journal = {Izvestiya. Mathematics }, pages = {104--123}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a4/} }
N. G. Pavlova; A. O. Remizov. Completion of the classification of generic singularities of geodesic. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 104-123. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a4/
[1] A. O. Remizov, “Geodesics on 2-surfaces with pseudo-Riemannian metric: singularities of changes of signature”, Sb. Math., 200:3 (2009), 385–403 | DOI | DOI | MR | Zbl
[2] A. O. Remizov, “Singularities of a geodesic flow on surfaces with a cuspidal edge”, Proc. Steklov Inst. Math., 268 (2010), 248–257 | DOI | MR | Zbl
[3] R. Ghezzi, A. O. Remizov, “On a class of vector fields with discontinuities of divide-by-zero type and its applications to geodesics in singular metrics”, J. Dyn. Control Syst., 18:1 (2012), 135–158 | DOI | MR | Zbl
[4] A. O. Remizov, “On the local and global properties of geodesics in pseudo-Riemannian metrics”, Differential Geom. Appl., 39 (2015), 36–58 | DOI | MR | Zbl
[5] A. O. Remizov, F. Tari, “Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics”, Geom. Dedicata, 185:1 (2016), 131–153 | DOI | MR | Zbl
[6] N. G. Pavlova, A. O. Remizov, “A brief survey on singularities of geodesic flows in smooth signature changing metrics on 2-surfaces”, Singularities and foliations. Geometry, topology and applications, Springer Proc. Math. Stat., 222, Springer, Cham, 2018, 135–155 | DOI | MR
[7] B. Kruglikov, “Point classification of second order ODEs: Tresse classification revisited and beyond”, Differential equations: geometry, symmetries and integrability, Abel Symp., 5, Springer, Berlin, 2009, 199–221 | DOI | MR | Zbl
[8] V. A. Yumaguzhin, “Differential invariants of second order ODEs. I”, Acta Appl. Math., 109:1 (2010), 283–313 | DOI | MR | Zbl
[9] F. Dumortier, S. Ibáñez, “Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields”, J. Differential Equations, 127:2 (1996), 590–647 | DOI | MR | Zbl
[10] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., 25, 2nd ed., Springer-Verlag, New York, 1988, xiv+351 pp. | DOI | MR | MR | Zbl | Zbl
[11] V. I. Arnol'd, Yu. S. Il'yashenko, “Ordinary differential equations”, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer-Verlag, Berlin, 1988, 1–148 | MR | Zbl
[12] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp. | DOI | MR | Zbl
[13] R. Roussarie, Modèles locaux de champs et de formes, Astérisque, 30, Soc. Math. France, Paris, 1975, 181 pp. | MR | Zbl
[14] V. I. Arnol'd, A. B. Givental', “Symplectic geometry”, Dynamical systems IV, Encyclopaedia Math. Sci., Springer, Berlin, 1990, 5–131 | MR | MR | Zbl | Zbl
[15] J. Martinet, “Sur les singularités des formes différentielles”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 95–178 | DOI | MR | Zbl
[16] A. O. Remizov, “Multidimensional Poincaré construction and singularities of lifted fields for implicit differential equations”, J. Math. Sci. (N. Y.), 151:6 (2008), 3561–3602 | DOI | MR | Zbl
[17] F. Takens, “Partially hyperbolic fixed points”, Topology, 10:2 (1971), 133–147 | DOI | MR | Zbl
[18] S. M. Voronin, “The Darboux–Whitney theorem and related questions”, Nonlinear Stokes phenomena, Adv. Soviet Math., 14, Amer. Math. Soc., Providence, RI, 1993, 139–233 | MR | Zbl
[19] S. M. Voronin, “Analiticheskaya klassifikatsiya rostkov golomorfnykh otobrazhenii s neizolirovannymi nepodvizhnymi tochkami i postoyannymi multiplikatorami i ee prilozheniya”, Vestn. Chelyabinskogo gos. un-ta. Cer. 3, 1999, no. 2(5), 12–30 | MR
[20] J.-C. Yoccoz, “Linéarisation des germes de difféomorphismes holomorphes de $(\mathbf C, 0)$”, C. R. Acad. Sci. Paris Sér. I Math., 306:1 (1988), 55–58 | MR | Zbl
[21] J. Sotomayor, M. Zhitomirskii, “Impasse singularities of differential systems of the form $A(x)x'=F(x)$”, J. Differential Equations, 169:2 (2001), 567–587 | DOI | MR | Zbl
[22] N. G. Pavlova, A. O. Remizov, “A complete classification of generic singularities of geodesic flows on 2-surfaces with pseudo-Riemannian metrics”, Russian Math. Surveys, 72:3 (2017), 577–579 | DOI | DOI | MR | Zbl
[23] M. Gromov, “Sign and geometric meaning of curvature”, Rend. Sem. Mat. Fis. Milano, 61 (1991), 9–123 | DOI | MR | Zbl | Zbl
[24] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl
[25] Ph. Hartman, Ordinary differential equations, Reprint of the 2nd ed., Birkhäuser, Boston, Mass., 1982, xv+612 pp. | MR | MR | Zbl | Zbl
[26] J. W. Bruce, G. J. Fletcher, F. Tari, “Bifurcations of implicit differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 130:3 (2000), 485–506 | MR | Zbl
[27] J. W. Bruce, D. L. Fidal, “On binary differential equations and umbilics”, Proc. Roy. Soc. Edinburgh Sect. A, 111:1-2 (1989), 147–168 | DOI | MR | Zbl
[28] J. W. Bruce, F. Tari, “On binary differential equations”, Nonlinearity, 8:2 (1995), 255–271 | DOI | MR | Zbl