Existence theorems for a~class of systems involving two quasilinear operators
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 49-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the existence of positive radial solutions for a class of quasilinear systems of the form $$ \begin{cases} \Delta_{\phi_1}u=a_1(|x|)f_1(v), \\ \Delta_{\phi_2}v=a_2(|x|)f_2(u), \end{cases} \quad x\in \mathbb{R}^N, \quad N\geqslant 3, $$ where $\Delta_{\phi}w:=\operatorname{div}(\phi(|\nabla w|)\nabla w)$, under appropriate conditions on the functions $\phi_1$, $\phi_2$, the weights $a_1$, $a_2$ and the non-linearities $f_1$, $f_2$. The conditions imposed for the existence of such solutions are different from those in previous results.
Keywords: partial differential equations, cooperative systems, linear systems, non-linear systems, methods of approximation.
@article{IM2_2019_83_1_a2,
     author = {D.-P. Covei},
     title = {Existence theorems for a~class of systems involving two quasilinear operators},
     journal = {Izvestiya. Mathematics },
     pages = {49--64},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/}
}
TY  - JOUR
AU  - D.-P. Covei
TI  - Existence theorems for a~class of systems involving two quasilinear operators
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 49
EP  - 64
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/
LA  - en
ID  - IM2_2019_83_1_a2
ER  - 
%0 Journal Article
%A D.-P. Covei
%T Existence theorems for a~class of systems involving two quasilinear operators
%J Izvestiya. Mathematics 
%D 2019
%P 49-64
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/
%G en
%F IM2_2019_83_1_a2
D.-P. Covei. Existence theorems for a~class of systems involving two quasilinear operators. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/