Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2019_83_1_a2, author = {D.-P. Covei}, title = {Existence theorems for a~class of systems involving two quasilinear operators}, journal = {Izvestiya. Mathematics }, pages = {49--64}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/} }
D.-P. Covei. Existence theorems for a~class of systems involving two quasilinear operators. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/
[1] D.-P. Covei, “On the radial solutions of a system with weights under the Keller–Osserman condition”, J. Math. Anal. Appl., 447:1 (2017), 167–180 | DOI | MR | Zbl
[2] D. P. Covei, “A remark on the existence of entire large and bounded solutions to a $(k_1,k_2)$-Hessian system with gradient term”, Acta Math. Sin. (Engl. Ser.), 33:6 (2017), 761–774 | DOI | MR | Zbl
[3] B. Franchi, E. Lanconelli, J. Serrin, “Existence and uniqueness of nonnegative solutions of quasilinear equations in $R^N$”, Adv. Math., 118:2 (1996), 177–243 | DOI | MR | Zbl
[4] G. Díaz, “A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller–Osserman condition”, Math. Ann., 353:1 (2012), 145–159 | DOI | MR | Zbl
[5] H. Grosse, A. Martin, Particle physics and the Schrödinger equation, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 6, Cambridge Univ. Press, Cambridge, 1997, xii+167 pp. | DOI | MR | Zbl
[6] A. Hamydy, M. Massar, N. Tsouli, “Existence of blow-up solutions for a non-linear equation with gradient term in $\mathbb R^N$”, J. Math. Anal. Appl., 377:1 (2011), 161–169 | DOI | MR | Zbl
[7] J. Jaroš, K. Takaŝi, “On strongly decreasing solutions of cyclic systems of second-order nonlinear differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 145:5 (2015), 1007–1028 | DOI | MR | Zbl
[8] J. B. Keller, “On solution of $\Delta u=f(u)$”, Comm. Pure Appl. Math., 10:4 (1957), 503–510 | DOI | MR | Zbl
[9] A. A. Kon'kov, “On properties of solutions of quasilinear second-order elliptic inequalities”, Nonlinear Anal., 123/124 (2015), 89–114 | DOI | MR | Zbl
[10] A. V. Lair, “A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems”, J. Math. Anal. Appl., 365:1 (2010), 103–108 | DOI | MR | Zbl
[11] A. V. Lair, “Entire large solutions to semilinear elliptic systems”, J. Math. Anal. Appl., 382:1 (2011), 324–333 | DOI | MR | Zbl
[12] A. V. Lair, A. Mohammed, “Entire large solutions of semilinear elliptic equations of mixed type”, Commun. Pure Appl. Anal., 8:5 (2009), 1607–1618 | DOI | MR | Zbl
[13] Hong Li, Pei Zhang, Zhijun Zhang, “A remark on the existence of entire positive solutions for a class of semilinear elliptic systems”, J. Math. Anal. Appl., 365:1 (2010), 338–341 | DOI | MR | Zbl
[14] Z. A. Luthey, Piecewise analytical solutions method for the radial Schroedinger equation, Ph.D. thesis, Harvard Univ., Cambridge, 1975 (no paging) | MR
[15] A. G. Losev, E. A. Mazepa, “On asymptotic behavior of positive solutions to some quasilinear inequalities on model Riemannian manifolds”, Ufa Math. J., 5:1 (2013), 83–89 | DOI | MR
[16] G. M. Lieberman, “Asymptotic behavior and uniqueness of blow-up solutions of quasilinear elliptic equations”, J. Anal. Math., 115:1 (2011), 213–249 | DOI | MR | Zbl
[17] E. A. Mazepa, “The positive solutions to quasilinear elliptic inequalities on model Riemannian manifolds”, Russian Math. (Iz. VUZ), 59:9 (2015), 18–25 | DOI | MR | Zbl
[18] A. Mohammed, “Boundary behavior of blow-up solutions to some weighted non-linear differential equations”, Electron. J. Differential Equations, 2002 (2002), 78, 15 pp. | MR | Zbl
[19] Y. Naito, H. Usami, “Entire solutions of the inequality $\operatorname{div}(A(|Du|)Du)\ge f(u)$”, Math. Z., 225:1 (1997), 167–175 | DOI | MR | Zbl
[20] Y. Naito, H. Usami, “Nonexistence results of positive entire solutions for quasilinear elliptic inequalities”, Canad. Math. Bull., 40:2 (1997), 244–253 | DOI | MR | Zbl
[21] R. Osserman, “On the inequality $\Delta u\ge f(u)$”, Pacific J. Math., 7:4 (1957), 1641–1647 | DOI | MR | Zbl
[22] C. L. Pripoae, “Non-holonomic economical systems”, Conference “Applied differential geometry: general relativity”–Workshop “Global analysis, differential geometry, Lie algebras”, BSG Proc., 10, Geom. Balkan Press, Bucharest, 2004, 142–149 | MR | Zbl
[23] M. D. Smooke, “Error estimates for piecewise perturbation series solutions of the radial Schrödinger equation”, SIAM J. Numer. Anal., 20:2 (1983), 279–295 | DOI | MR | Zbl
[24] Haitao Yang, “On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in $R^N$”, Commun. Pure Appl. Anal., 4:1 (2005), 187–198 | DOI | MR | Zbl
[25] Zhijun Zhang, Song Zhou, “Existence of entire positive $k$-convex radial solutions to Hessian equations and systems with weights”, Appl. Math. Lett., 50 (2015), 48–55 | DOI | MR | Zbl
[26] Xinguang Zhang, “A necessary and sufficient condition for the existence of large solutions to ‘mixed’ type elliptic systems”, Appl. Math. Lett., 25:12 (2012), 2359–2364 | DOI | MR | Zbl
[27] Zhijun Zhang, “Existence of positive radial solutions for quasilinear elliptic equations and systems”, Electron. J. Differential Equations, 2016 (2016), 50, 9 pp. | MR | Zbl
[28] Song Zhou, “Existence of entire radial solutions to a class of quasilinear elliptic equations and systems”, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 38, 10 pp. | MR | Zbl
[29] N. Fukagai, K. Narukawa, “On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems”, Ann. Mat. Pura Appl. (4), 186:3 (2007), 539–564 | DOI | MR | Zbl
[30] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl
[31] J. Soria, Tent spaces based on weighted Lorentz spaces. Carleson measures, Ph.D. thesis, Graduate School of Arts and Sciences, Washington Univ., St. Louis, 1990, 121 pp. | MR