Existence theorems for a~class of systems involving two quasilinear operators
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the existence of positive radial solutions for a class of quasilinear systems of the form $$ \begin{cases} \Delta_{\phi_1}u=a_1(|x|)f_1(v), \\ \Delta_{\phi_2}v=a_2(|x|)f_2(u), \end{cases} \quad x\in \mathbb{R}^N, \quad N\geqslant 3, $$ where $\Delta_{\phi}w:=\operatorname{div}(\phi(|\nabla w|)\nabla w)$, under appropriate conditions on the functions $\phi_1$, $\phi_2$, the weights $a_1$, $a_2$ and the non-linearities $f_1$, $f_2$. The conditions imposed for the existence of such solutions are different from those in previous results.
Keywords: partial differential equations, cooperative systems, linear systems, non-linear systems, methods of approximation.
@article{IM2_2019_83_1_a2,
     author = {D.-P. Covei},
     title = {Existence theorems for a~class of systems involving two quasilinear operators},
     journal = {Izvestiya. Mathematics },
     pages = {49--64},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/}
}
TY  - JOUR
AU  - D.-P. Covei
TI  - Existence theorems for a~class of systems involving two quasilinear operators
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 49
EP  - 64
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/
LA  - en
ID  - IM2_2019_83_1_a2
ER  - 
%0 Journal Article
%A D.-P. Covei
%T Existence theorems for a~class of systems involving two quasilinear operators
%J Izvestiya. Mathematics 
%D 2019
%P 49-64
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/
%G en
%F IM2_2019_83_1_a2
D.-P. Covei. Existence theorems for a~class of systems involving two quasilinear operators. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a2/

[1] D.-P. Covei, “On the radial solutions of a system with weights under the Keller–Osserman condition”, J. Math. Anal. Appl., 447:1 (2017), 167–180 | DOI | MR | Zbl

[2] D. P. Covei, “A remark on the existence of entire large and bounded solutions to a $(k_1,k_2)$-Hessian system with gradient term”, Acta Math. Sin. (Engl. Ser.), 33:6 (2017), 761–774 | DOI | MR | Zbl

[3] B. Franchi, E. Lanconelli, J. Serrin, “Existence and uniqueness of nonnegative solutions of quasilinear equations in $R^N$”, Adv. Math., 118:2 (1996), 177–243 | DOI | MR | Zbl

[4] G. Díaz, “A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller–Osserman condition”, Math. Ann., 353:1 (2012), 145–159 | DOI | MR | Zbl

[5] H. Grosse, A. Martin, Particle physics and the Schrödinger equation, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 6, Cambridge Univ. Press, Cambridge, 1997, xii+167 pp. | DOI | MR | Zbl

[6] A. Hamydy, M. Massar, N. Tsouli, “Existence of blow-up solutions for a non-linear equation with gradient term in $\mathbb R^N$”, J. Math. Anal. Appl., 377:1 (2011), 161–169 | DOI | MR | Zbl

[7] J. Jaroš, K. Takaŝi, “On strongly decreasing solutions of cyclic systems of second-order nonlinear differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 145:5 (2015), 1007–1028 | DOI | MR | Zbl

[8] J. B. Keller, “On solution of $\Delta u=f(u)$”, Comm. Pure Appl. Math., 10:4 (1957), 503–510 | DOI | MR | Zbl

[9] A. A. Kon'kov, “On properties of solutions of quasilinear second-order elliptic inequalities”, Nonlinear Anal., 123/124 (2015), 89–114 | DOI | MR | Zbl

[10] A. V. Lair, “A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems”, J. Math. Anal. Appl., 365:1 (2010), 103–108 | DOI | MR | Zbl

[11] A. V. Lair, “Entire large solutions to semilinear elliptic systems”, J. Math. Anal. Appl., 382:1 (2011), 324–333 | DOI | MR | Zbl

[12] A. V. Lair, A. Mohammed, “Entire large solutions of semilinear elliptic equations of mixed type”, Commun. Pure Appl. Anal., 8:5 (2009), 1607–1618 | DOI | MR | Zbl

[13] Hong Li, Pei Zhang, Zhijun Zhang, “A remark on the existence of entire positive solutions for a class of semilinear elliptic systems”, J. Math. Anal. Appl., 365:1 (2010), 338–341 | DOI | MR | Zbl

[14] Z. A. Luthey, Piecewise analytical solutions method for the radial Schroedinger equation, Ph.D. thesis, Harvard Univ., Cambridge, 1975 (no paging) | MR

[15] A. G. Losev, E. A. Mazepa, “On asymptotic behavior of positive solutions to some quasilinear inequalities on model Riemannian manifolds”, Ufa Math. J., 5:1 (2013), 83–89 | DOI | MR

[16] G. M. Lieberman, “Asymptotic behavior and uniqueness of blow-up solutions of quasilinear elliptic equations”, J. Anal. Math., 115:1 (2011), 213–249 | DOI | MR | Zbl

[17] E. A. Mazepa, “The positive solutions to quasilinear elliptic inequalities on model Riemannian manifolds”, Russian Math. (Iz. VUZ), 59:9 (2015), 18–25 | DOI | MR | Zbl

[18] A. Mohammed, “Boundary behavior of blow-up solutions to some weighted non-linear differential equations”, Electron. J. Differential Equations, 2002 (2002), 78, 15 pp. | MR | Zbl

[19] Y. Naito, H. Usami, “Entire solutions of the inequality $\operatorname{div}(A(|Du|)Du)\ge f(u)$”, Math. Z., 225:1 (1997), 167–175 | DOI | MR | Zbl

[20] Y. Naito, H. Usami, “Nonexistence results of positive entire solutions for quasilinear elliptic inequalities”, Canad. Math. Bull., 40:2 (1997), 244–253 | DOI | MR | Zbl

[21] R. Osserman, “On the inequality $\Delta u\ge f(u)$”, Pacific J. Math., 7:4 (1957), 1641–1647 | DOI | MR | Zbl

[22] C. L. Pripoae, “Non-holonomic economical systems”, Conference “Applied differential geometry: general relativity”–Workshop “Global analysis, differential geometry, Lie algebras”, BSG Proc., 10, Geom. Balkan Press, Bucharest, 2004, 142–149 | MR | Zbl

[23] M. D. Smooke, “Error estimates for piecewise perturbation series solutions of the radial Schrödinger equation”, SIAM J. Numer. Anal., 20:2 (1983), 279–295 | DOI | MR | Zbl

[24] Haitao Yang, “On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in $R^N$”, Commun. Pure Appl. Anal., 4:1 (2005), 187–198 | DOI | MR | Zbl

[25] Zhijun Zhang, Song Zhou, “Existence of entire positive $k$-convex radial solutions to Hessian equations and systems with weights”, Appl. Math. Lett., 50 (2015), 48–55 | DOI | MR | Zbl

[26] Xinguang Zhang, “A necessary and sufficient condition for the existence of large solutions to ‘mixed’ type elliptic systems”, Appl. Math. Lett., 25:12 (2012), 2359–2364 | DOI | MR | Zbl

[27] Zhijun Zhang, “Existence of positive radial solutions for quasilinear elliptic equations and systems”, Electron. J. Differential Equations, 2016 (2016), 50, 9 pp. | MR | Zbl

[28] Song Zhou, “Existence of entire radial solutions to a class of quasilinear elliptic equations and systems”, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 38, 10 pp. | MR | Zbl

[29] N. Fukagai, K. Narukawa, “On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems”, Ann. Mat. Pura Appl. (4), 186:3 (2007), 539–564 | DOI | MR | Zbl

[30] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl

[31] J. Soria, Tent spaces based on weighted Lorentz spaces. Carleson measures, Ph.D. thesis, Graduate School of Arts and Sciences, Washington Univ., St. Louis, 1990, 121 pp. | MR