Dual and almost-dual homogeneous spaces
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 20-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We study homogeneous spaces $G/H$ such that the transitive action of the Lie group $G$ on $G/H$ preserves the structure of a dual or almost-dual manifold. We consider general homogeneous spaces of this kind as well as compact or lower-dimensional ones.
Keywords: dual manifold, almost-dual structure, homogeneous space.
@article{IM2_2019_83_1_a1,
     author = {V. V. Gorbatsevich},
     title = {Dual and almost-dual homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {20--48},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Dual and almost-dual homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 20
EP  - 48
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a1/
LA  - en
ID  - IM2_2019_83_1_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Dual and almost-dual homogeneous spaces
%J Izvestiya. Mathematics 
%D 2019
%P 20-48
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a1/
%G en
%F IM2_2019_83_1_a1
V. V. Gorbatsevich. Dual and almost-dual homogeneous spaces. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 20-48. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a1/