Dual and almost-dual homogeneous spaces
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 20-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study homogeneous spaces $G/H$ such that the transitive action of the Lie group $G$ on $G/H$ preserves the structure of a dual or almost-dual manifold. We consider general homogeneous spaces of this kind as well as compact or lower-dimensional ones.
Keywords: dual manifold, almost-dual structure, homogeneous space.
@article{IM2_2019_83_1_a1,
     author = {V. V. Gorbatsevich},
     title = {Dual and almost-dual homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {20--48},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Dual and almost-dual homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 20
EP  - 48
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a1/
LA  - en
ID  - IM2_2019_83_1_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Dual and almost-dual homogeneous spaces
%J Izvestiya. Mathematics 
%D 2019
%P 20-48
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a1/
%G en
%F IM2_2019_83_1_a1
V. V. Gorbatsevich. Dual and almost-dual homogeneous spaces. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 20-48. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a1/

[1] V. V. Gorbatsevich, “Foundations of the theory of dual Lie algebras”, Russian Math. (Iz. VUZ), 62:4 (2018), 29–41 | DOI | Zbl

[2] V. V. Gorbatsevich, “On geometry of solutions to approximate equations and their symmetries”, Ufa Math. J., 9:2 (2017), 40–54 | DOI | MR

[3] V. V. Vishnevskii, A. P. Shirokov, V. V. Shurygin, Prostranstva nad algebrami, Izd-vo Kazanskogo un-ta, Kazan, 1985, 264 pp. | MR | Zbl

[4] M. de León, P. R. Rodrigues, Methods of differential geometry in analytical mechanics, North-Holland Math. Stud., 158, North-Holland Publishing Co., Amsterdam, 1989, x+483 pp. | MR | Zbl

[5] M. P. Closs, “Homogeneous almost tangent structures”, Proc. Amer. Math. Soc., 23:2 (1969), 237–241 | DOI | MR | Zbl

[6] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl

[7] D. Goel, “Almost tangent structures”, Kodai Math. Sem. Rep., 26:2-3 (1975), 187–193 | DOI | MR | Zbl

[8] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 54, Indag. Math., 13 (1951), 200–212 | DOI | MR | Zbl

[9] M. A. Malakhaltsev, “Struktury mnogoobraziya nad algebroi dualnykh chisel na tore”, Tr. geom. sem., 22, Izd-vo Kazanskogo un-ta, Kazan, 1994, 47–62 | MR | Zbl

[10] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, II, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1963, 1969, xi+329 pp., xv+470 pp. | MR | MR | MR | MR | Zbl | Zbl

[11] R. Brickell, R. S. Clark, “Integrable almost tangent structures”, J. Differential Geometry, 9:4 (1974), 557–563 | DOI | MR | Zbl

[12] D. Poguntke, “Dense Lie group homomorphisms”, J. Algebra, 169:2 (1994), 625–647 | DOI | MR | Zbl

[13] M. A. Mikenberg, “Manifolds over the algebra of dual numbers whose canonical foliation has an everywhere dense leaf”, Russian Math. (Iz. VUZ), 47:3 (2003), 28–30 | MR | Zbl

[14] M. A. Mikenberg, “Topological properties of manifolds over local algebras admitting holomorphic embeddings”, Russian Math. (Iz. VUZ), 46:11 (2002), 48–50 | MR | Zbl

[15] R. W. Brockett, H. J. Sussmann, “Tangent bundles of homogeneous spaces are homogeneous spaces”, Proc. Amer. Math. Soc., 35:2 (1972), 550–551 | DOI | MR | Zbl

[16] M. Otte, J. Potters, “Beispiele homogener Mannigfaltigkeite”, Manuscripta Math., 10:2 (1973), 117–127 | DOI | MR | Zbl

[17] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergeb. Math. Grenzgeb., 68, Springer-Verlag, New York–Heidelberg, 1972, ix+227 pp. | MR | MR | Zbl

[18] M. Crampin, G. Thompson, “Affine bundles and integrable almost tangent structures”, Math. Proc. Cambridge Philos. Soc., 98:1 (1985), 61–71 | DOI | MR | Zbl

[19] M. A. Malakhaltsev, “Ob odnom klasse mnogoobrazii nad algebroi dualnykh chisel”, Tr. geom. sem., 21, Izd-vo Kazanskogo un-ta, Kazan, 1991, 70–79 | MR | Zbl

[20] V. V. Gorbatsevich, “Compact homogeneous spaces with semisimple fundamental group”, Siberian Math. J., 22:1 (1981), 34–49 | DOI | MR | Zbl

[21] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras, v. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–235 | MR | MR | Zbl | Zbl

[22] V. V. Gorbatsevich, “On a fibration of compact homogeneous spaces”, Trans. Mosc. Math. Soc., 1983, no. 1, 129–157 | MR | Zbl

[23] G. D. Mostow, “Factor spaces of solvable groups”, Ann. of Math. (2), 60 (1954), 1–27 | DOI | MR | Zbl

[24] G. D. Mostow, “The extensibility of local Lie groups of thansformations and groups on surfaces”, Ann. of Math. (2), 52:3 (1950), 606–636 | DOI | MR | Zbl

[25] R. K. Gazizov, V. O. Lukaschuk, “Klassifikatsiya nepodobnykh priblizhennykh algebr Li s dvumya suschestvennymi simmetriyami na ploskosti”, Trudy pyatoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (29–31 maya 2008 g.). Chast 3, Differentsialnye uravneniya i kraevye zadachi, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2008, 62–64

[26] V. O. Lukaschuk, “Nepodobnye shestimernye priblizhennye algebry Li na ploskosti i invariantnye differentsialnye uravneniya vtorogo poryadka s malym parametrom”, Ufimsk. matem. zhurn., 1:3 (2009), 97–110 | Zbl