Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 1-19
Voir la notice de l'article provenant de la source Math-Net.Ru
A hyperbolic lattice is said to be $(1{,}{\kern1pt}2)$-reflective
if its automorphism group is generated by $1$- and $2$-reflections up to finite index.
We prove that the fundamental polyhedron of a $\mathbb{Q}$-arithmetic
cocompact reflection group in three-dimensional Lobachevsky space contains
an edge with sufficiently small distance between its framing faces.
Using this fact, we obtain a classification of $(1{,}{\kern1pt}2)$-reflective
anisotropic hyperbolic lattices of rank $4$.
Keywords:
reflective hyperbolic lattices, roots, reflection groups, fundamental polyhedra, Coxeter polyhedra.
@article{IM2_2019_83_1_a0,
author = {N. V. Bogachev},
title = {Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4},
journal = {Izvestiya. Mathematics },
pages = {1--19},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/}
}
N. V. Bogachev. Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/