Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 1-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A hyperbolic lattice is said to be $(1{,}{\kern1pt}2)$-reflective if its automorphism group is generated by $1$- and $2$-reflections up to finite index. We prove that the fundamental polyhedron of a $\mathbb{Q}$-arithmetic cocompact reflection group in three-dimensional Lobachevsky space contains an edge with sufficiently small distance between its framing faces. Using this fact, we obtain a classification of $(1{,}{\kern1pt}2)$-reflective anisotropic hyperbolic lattices of rank $4$.
Keywords: reflective hyperbolic lattices, roots, reflection groups, fundamental polyhedra, Coxeter polyhedra.
@article{IM2_2019_83_1_a0,
     author = {N. V. Bogachev},
     title = {Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4},
     journal = {Izvestiya. Mathematics },
     pages = {1--19},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/}
}
TY  - JOUR
AU  - N. V. Bogachev
TI  - Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1
EP  - 19
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/
LA  - en
ID  - IM2_2019_83_1_a0
ER  - 
%0 Journal Article
%A N. V. Bogachev
%T Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
%J Izvestiya. Mathematics 
%D 2019
%P 1-19
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/
%G en
%F IM2_2019_83_1_a0
N. V. Bogachev. Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/

[1] B. A. Venkov, “Ob arifmeticheskoi gruppe avtomorfizmov neopredelennoi kvadratichnoi formy”, Izv. AN SSSR. Ser. matem., 1:2 (1937), 139–170 | Zbl

[2] H. S. M. Coxeter, “Discrete groups generated by reflections”, Ann. of Math. (2), 35:3 (1934), 588–621 | DOI | MR | Zbl

[3] È. B. Vinberg, “Discrete groups generated by reflections in Lobačevskiĭ spaces”, Math. USSR-Sb., 1:3 (1967), 429–444 | DOI | MR | Zbl

[4] È. B. Vinberg, “On groups of unit elements of certain quadratic forms”, Math. USSR-Sb., 16:1 (1972), 17–35 | DOI | MR | Zbl

[5] È. B. Vinberg, “Some arithmetical discrete groups in Lobačevskiĭ spaces”, Discrete subgroups of Lie groups and applications to moduli, Internat. Colloq. (Bombay, 1973), Oxford Univ. Press, Bombay, 1975, 323–348 | MR | Zbl

[6] È. B. Vinberg, “The non-exitence of crystallographic groups of reflections in Lobachevskij spaces of large dimension”, Trans. Moscow Math. Soc., 1985 (1985), 75–112 | MR | Zbl

[7] F. Esselmann, “Über die maximale Dimension von Lorentz–Gittern mit coendlicher Spiegelungsgruppe”, J. Number Theory, 61:1 (1996), 103–144 | DOI | MR | Zbl

[8] V. V. Nikulin, “Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces”, Izv. Math., 71:1 (2007), 53–56 | DOI | DOI | MR | Zbl

[9] I. Agol, M. Belolipetsky, P. Storm, K. Whyte, “Finiteness of arithmetic hyperbolic reflection groups”, Groups Geom. Dyn., 2:4 (2008), 481–498 | DOI | MR | Zbl

[10] V. V. Nikulin, “On factor groups of the automorphism groups of hyperbolic forms modulo subgroups generated by 2-reflections”, Soviet Math. Dokl., 20 (1979), 1156–1158 | MR | Zbl

[11] V. V. Nikulin, “Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebro-geometric applications”, J. Soviet Math., 22:4 (1983), 1401–1475 | DOI | MR | Zbl

[12] V. V. Nikulin, “Surfaces of type K3 with finite group of automorphisms and Picard group of rank three”, Proc. Steklov Inst. Math., 165 (1985), 131–155 | MR | Zbl

[13] V. V. Nikulin, “On the classification of hyperbolic root systems of rank three”, Proc. Steklov Inst. Math., 230:3 (2000), 1–241 | MR | Zbl

[14] E. Vinberg, Classification of $2$-reflective hyperbolic lattices of rank $4$, Preprint 98-113, Univ. Bielefeld, 1998, 35 pp. http://sfb343.math.uni-bielefeld.de/sfb343/preprints/index98.html

[15] E. B. Vinberg, “Classification of 2-reflective hyperbolic lattices of rank 4”, Trans. Moscow Math. Soc., 2007 (2007), 39–66 | DOI | MR | Zbl

[16] D. Allcock, The reflective Lorentzian lattices of rank $3$, Mem. Amer. Math. Soc., 220, no. 1033, Amer. Math. Soc., Providence, RI, 2012, x+108 pp. | DOI | MR | Zbl

[17] R. Scharlau, On the classification of arithmetic reflection groups on hyperbolic $3$-space, Bielefeld, 1989, 26 pp. http://www.mathematik.tu-dortmund.de/~scharlau/research/index.html

[18] R. Scharlau, C. Walhorn, “Integral lattices and hyperbolic reflection groups”, Journées arithmétiques (Geneva, 1991), Astérisque, 209, Soc. Math. France, Paris, 1992, 279–291 | MR | Zbl

[19] C. Walhorn, Arithmetische Spiegelungsgruppen auf dem $4$-dimensionalen hyperbolischen Raum, Ph.D. thesis, Univ. Bielefeld, Bielefeld, 1993, 47 pp.

[20] I. Turkalj, Reflective Lorentzian lattices of signature $(5,1)$, Diss. ... Dr. rer. nat., Tech. Univ. Dortmund, 2017, 85 pp. | DOI

[21] N. V. Bogachev, Reflective anisotropic hyperbolic lattices of rank $4$, 2016, arXiv: 1610.06148v1

[22] N. V. Bogachev, “Reflective anisotropic hyperbolic lattices of rank 4”, Russian Math. Surveys, 72:1 (2017), 179–181 | DOI | DOI | MR | Zbl

[23] M. Belolipetsky, “Arithmetic hyperbolic reflection groups”, Bull. Amer. Math. Soc. (N.S.), 53:3 (2016), 437–475 | DOI | MR | Zbl

[24] È. B. Vinberg, “Hyperbolic reflection groups”, Russian Math. Surveys, 40:1 (1985), 31–75 | DOI | MR | Zbl

[25] È. B. Vinberg, O. V. Shvartsman, “Discrete groups of motions of spaces of constant curvature”, Geometry II, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993, 139–248 | DOI | MR | Zbl

[26] V. V. Nikulin, “On arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 16:3 (1981), 573–601 | DOI | MR | Zbl

[27] V. V. Nikulin, “On the classification of arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 18:1 (1982), 99–123 | DOI | MR | Zbl

[28] D. V. Alekseevskij, E. B. Vinberg, A. S. Solodovnikov, “Geometry of spaces of constant curvature”, Geometry II, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993, 1–138 | DOI | MR | Zbl

[29] J. W. S. Cassels, Rational quadratic forms, London Math. Soc. Monogr., 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London–New York, 1978, xvi+413 pp. | MR | MR | Zbl | Zbl

[30] V. O. Bugaenko, “Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices”, Lie groups, their discrete subgroups, and invariant theory, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992, 33–55 | MR | Zbl

[31] R. Guglielmetti, Hyperbolic isometries in (in-)finite dimensions and discrete reflection groups: theory and computations, Ph.D. thesis, Univ. of Fribourg, 2017, 200 pp. http://homeweb1.unifr.ch/kellerha/pub/DissRGuglielmetti-final.pdf

[32] N. V. Bogachev, A. Perepechko, Vinberg's algorithm, 2017 | DOI

[33] N. V. Bogachev, A. Yu. Perepechko, “Vinberg's algorithm for hyperbolic lattices”, Math. Notes, 103:5 (2018), 836–840 | DOI | DOI | MR | Zbl

[34] A. Mark, “Reflection groups of the quadratic form $- p x_0^2+x_1^2+\dots+x_n^2$ with $p$ prime”, Publ. Mat., 59:2 (2015), 353–372 | DOI | MR | Zbl

[35] J. A. McLeod, Arithmetic hyperbolic reflection groups, Ph.D. thesis, Durham Univ., 2013, 170 pp. http://etheses.dur.ac.uk/7743 | MR