Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 1-19

Voir la notice de l'article provenant de la source Math-Net.Ru

A hyperbolic lattice is said to be $(1{,}{\kern1pt}2)$-reflective if its automorphism group is generated by $1$- and $2$-reflections up to finite index. We prove that the fundamental polyhedron of a $\mathbb{Q}$-arithmetic cocompact reflection group in three-dimensional Lobachevsky space contains an edge with sufficiently small distance between its framing faces. Using this fact, we obtain a classification of $(1{,}{\kern1pt}2)$-reflective anisotropic hyperbolic lattices of rank $4$.
Keywords: reflective hyperbolic lattices, roots, reflection groups, fundamental polyhedra, Coxeter polyhedra.
@article{IM2_2019_83_1_a0,
     author = {N. V. Bogachev},
     title = {Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4},
     journal = {Izvestiya. Mathematics },
     pages = {1--19},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/}
}
TY  - JOUR
AU  - N. V. Bogachev
TI  - Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
JO  - Izvestiya. Mathematics 
PY  - 2019
SP  - 1
EP  - 19
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/
LA  - en
ID  - IM2_2019_83_1_a0
ER  - 
%0 Journal Article
%A N. V. Bogachev
%T Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4
%J Izvestiya. Mathematics 
%D 2019
%P 1-19
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/
%G en
%F IM2_2019_83_1_a0
N. V. Bogachev. Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank~4. Izvestiya. Mathematics , Tome 83 (2019) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/IM2_2019_83_1_a0/