Trigonometric factorizations of the Horadam sequence and its companion sequence
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1265-1277.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Horadam sequence $\{W_n\}$ and its companion sequence $\{X_n\}$ satisfying a second-order recurrence. We generalize earlier results by giving new results about factorizations of these sequences. In order to obtain these results, we use connections between the determinants of tridiagonal matrices and the terms of these sequences, and also take advantage of Chebyshev polynomials of the second kind.
Keywords: Horadam sequence, determinant, eigenvalue.
Mots-clés : tridiagonal matrix
@article{IM2_2018_82_6_a7,
     author = {Z. Siar},
     title = {Trigonometric factorizations of the {Horadam} sequence and its companion sequence},
     journal = {Izvestiya. Mathematics },
     pages = {1265--1277},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a7/}
}
TY  - JOUR
AU  - Z. Siar
TI  - Trigonometric factorizations of the Horadam sequence and its companion sequence
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1265
EP  - 1277
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a7/
LA  - en
ID  - IM2_2018_82_6_a7
ER  - 
%0 Journal Article
%A Z. Siar
%T Trigonometric factorizations of the Horadam sequence and its companion sequence
%J Izvestiya. Mathematics 
%D 2018
%P 1265-1277
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a7/
%G en
%F IM2_2018_82_6_a7
Z. Siar. Trigonometric factorizations of the Horadam sequence and its companion sequence. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1265-1277. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a7/

[1] A. F. Horadam, “Basic properties of a certain generalized sequence of numbers”, Fibonacci Quart., 3:3 (1965), 161–176 | MR | Zbl

[2] Z. Şiar, R. Keskin, “Some new identities concerning the Horadam sequence and its companion sequence” (to appear)

[3] R. S. Melham, A. G. Shannon, “Some congruence properties of generalized second-order integer sequences”, Fibonacci Quart., 32:5 (1994), 424–428 | MR | Zbl

[4] R. S. Melham, “Certain classes on finite sums that involve generalized Fibonacci and Lucas numbers”, Fibonacci Quart., 42:1 (2004), 47–54 | MR | Zbl

[5] S. Rabinowitz, “Algorithmic manipulation of second-order linear recurrences”, Fibonacci Quart., 37:2 (1999), 162–177 | MR | Zbl

[6] N. D. Cahill, J. R. D'Errico, J. P. Spence, “Complex factorizations of the Fibonacci and Lucas numbers”, Fibonacci Quart., 41:1 (2003), 13–19 | MR | Zbl

[7] N. D. Cahill, D. A. Narayan, “Fibonacci and Lucas numbers as tridiagonal matrix determinants”, Fibonacci Quart., 42:3 (2004), 216–221 | MR | Zbl

[8] J. Seibert, P. Trojovsky, “On factorization of the Fibonacci and Lucas numbers using tridiagonal determinants”, Math. Slovaca, 62:3 (2012), 439–450 | DOI | MR | Zbl

[9] J. Seibert, P. Trojovsky, “On factorization of the generalized Fibonacci numbers”, Int. J. Pure Appl. Math., 30:1 (2006), 23–32 | MR | Zbl

[10] E. Kılıç, P. Stănică, “Factorizations and representations of second order linear recurrences with indices in arithmetic progressions”, Bol. Soc. Mat. Mexicana (3), 15:1 (2009), 23–26 | MR | Zbl

[11] Ş. B. Bozkurt, F. Yımaz, D. Bozkurt, “On the complex factorization of the Lucas sequence”, Appl. Math. Lett., 24:8 (2011), 1317–1321 | DOI | MR | Zbl

[12] A. Nallı H. Civciv, “A generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbers”, Chaos Solitons Fractals, 40:1 (2009), 355–361 | DOI | MR | Zbl

[13] Honglin Wu, “Complex factorizations of the Lucas sequences via matrix methods”, J. Appl. Math., 2014, 387675, 6 pp. | DOI | MR

[14] Z. Şiar, R. Keskin, “Some new identities concerning generalized Fibonacci and Lucas numbers”, Hacet. J. Math. Stat., 42:3 (2013), 211–222 | MR | Zbl