Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_6_a7, author = {Z. Siar}, title = {Trigonometric factorizations of the {Horadam} sequence and its companion sequence}, journal = {Izvestiya. Mathematics }, pages = {1265--1277}, publisher = {mathdoc}, volume = {82}, number = {6}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a7/} }
Z. Siar. Trigonometric factorizations of the Horadam sequence and its companion sequence. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1265-1277. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a7/
[1] A. F. Horadam, “Basic properties of a certain generalized sequence of numbers”, Fibonacci Quart., 3:3 (1965), 161–176 | MR | Zbl
[2] Z. Şiar, R. Keskin, “Some new identities concerning the Horadam sequence and its companion sequence” (to appear)
[3] R. S. Melham, A. G. Shannon, “Some congruence properties of generalized second-order integer sequences”, Fibonacci Quart., 32:5 (1994), 424–428 | MR | Zbl
[4] R. S. Melham, “Certain classes on finite sums that involve generalized Fibonacci and Lucas numbers”, Fibonacci Quart., 42:1 (2004), 47–54 | MR | Zbl
[5] S. Rabinowitz, “Algorithmic manipulation of second-order linear recurrences”, Fibonacci Quart., 37:2 (1999), 162–177 | MR | Zbl
[6] N. D. Cahill, J. R. D'Errico, J. P. Spence, “Complex factorizations of the Fibonacci and Lucas numbers”, Fibonacci Quart., 41:1 (2003), 13–19 | MR | Zbl
[7] N. D. Cahill, D. A. Narayan, “Fibonacci and Lucas numbers as tridiagonal matrix determinants”, Fibonacci Quart., 42:3 (2004), 216–221 | MR | Zbl
[8] J. Seibert, P. Trojovsky, “On factorization of the Fibonacci and Lucas numbers using tridiagonal determinants”, Math. Slovaca, 62:3 (2012), 439–450 | DOI | MR | Zbl
[9] J. Seibert, P. Trojovsky, “On factorization of the generalized Fibonacci numbers”, Int. J. Pure Appl. Math., 30:1 (2006), 23–32 | MR | Zbl
[10] E. Kılıç, P. Stănică, “Factorizations and representations of second order linear recurrences with indices in arithmetic progressions”, Bol. Soc. Mat. Mexicana (3), 15:1 (2009), 23–26 | MR | Zbl
[11] Ş. B. Bozkurt, F. Yımaz, D. Bozkurt, “On the complex factorization of the Lucas sequence”, Appl. Math. Lett., 24:8 (2011), 1317–1321 | DOI | MR | Zbl
[12] A. Nallı H. Civciv, “A generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbers”, Chaos Solitons Fractals, 40:1 (2009), 355–361 | DOI | MR | Zbl
[13] Honglin Wu, “Complex factorizations of the Lucas sequences via matrix methods”, J. Appl. Math., 2014, 387675, 6 pp. | DOI | MR
[14] Z. Şiar, R. Keskin, “Some new identities concerning generalized Fibonacci and Lucas numbers”, Hacet. J. Math. Stat., 42:3 (2013), 211–222 | MR | Zbl