On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1239-1264.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the Cauchy–Riemann (or Wirtinger) operators and the Laplacian on ${\mathbb C}^m$ to zero-degree currents on a (possibly singular) Riemann subdomain $D$ of a complex space (without recourse to resolution of singularities). The former extension gives rise to an adjoint operator $\overline\partial^*$ for the $\overline\partial$-operator on extendable test forms on $D$ (the components of $\overline\partial^*$ are the Wirtinger derivations). By means of the Wirtinger derivations, we generalize Gunning's theorem on the Cauchy–Riemann criterion (in the weak sense) for locally integrable functions to zero-degree currents on a complex space. To prove this result, we first give a generalization of Weyl's lemma to a Helmholtz operator. In the case of a continuous (resp. Lipschitzian) zero-degree current, we give a characterization of ‘weak holomorphy’ in terms of a local mean-value property (resp. an Euler operation). Wirtinger derivations also enable us to give explicit representations of the Green operator for the modified Laplacian ${\mathcal S}_{p,1,0}:= - \triangle_{p} + \mathrm{Id}$ (acting weakly on the Sobolev space $H^{-1}(D)$) and of Riesz's isomorphism between the Sobolev spaces $H^1_c(D)^*$ and $H^1_c(D)$.
Keywords: Wirtinger derivations, ${\overline \partial}_{\mathscr{W}}$-closed currents, ${\overline \partial}_{\mathscr{E}}$-closed currents, Schrödinger operator.
@article{IM2_2018_82_6_a6,
     author = {Ch.-Ch. Tung},
     title = {On {Wirtinger} derivations, the adjoint of the operator~$\overline\partial$, and applications},
     journal = {Izvestiya. Mathematics },
     pages = {1239--1264},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/}
}
TY  - JOUR
AU  - Ch.-Ch. Tung
TI  - On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1239
EP  - 1264
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/
LA  - en
ID  - IM2_2018_82_6_a6
ER  - 
%0 Journal Article
%A Ch.-Ch. Tung
%T On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications
%J Izvestiya. Mathematics 
%D 2018
%P 1239-1264
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/
%G en
%F IM2_2018_82_6_a6
Ch.-Ch. Tung. On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1239-1264. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/

[1] W. Wirtinger, “Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen”, Math. Ann., 97:1 (1927), 357–375 | DOI | MR | Zbl

[2] R. C. Gunning, Introduction to holomorphic functions of several variables, v. I, Wadsworth Brooks/Cole Math. Ser., Function theory, Wadsworth Brooks/Cole Advanced Books Software, Pacific Grove, CA, 1990, xx+203 pp. | MR | Zbl

[3] C. Tung, “The first main theorem of value distribution on complex spaces”, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 15:4 (1979), 91–263 | MR | Zbl

[4] J. R. King, “The currents defined by analytic varieties”, Acta Math., 127:3-4 (1971), 185–220 | DOI | MR | Zbl

[5] G. Grauert, R. Remmert, Teoriya prostranstv Shteina, Nauka, M., 1989, 336 pp. ; H. Grauert, R. Remmert, Theorie der Steinschen Räume, Grundlehren Math. Wiss., 227, Springer-Verlag, Berlin–New York, 1977, xx+249 pp. ; H. Grauert, R. Remmert, Theory of Stein spaces, Grundlehren Math. Wiss., 236, Springer-Verlag, Berlin–New York, 1979, xxi+249 с. | MR | Zbl | MR | Zbl | Zbl

[6] J. E. Fornæss, B. Stensønes, Lectures on counterexamples in several complex variables, Math. Notes, 33, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, 1987, viii+248 pp. | MR | Zbl

[7] M. Andersson, H. Samuelsson, “A Dolbeault–Grothendieck lemma on complex spaces via Koppelman formulas”, Invent. Math., 190:2 (2012), 261–297 | DOI | MR | Zbl

[8] J. E. Fornæss, E. A. Gavosto, “The Cauchy Riemann equation on singular spaces”, Duke Math. J., 93:3 (1998), 453–477 | DOI | MR | Zbl

[9] G. Henkin, M. Passare, “Abelian differentials on singular varieties and variations on a theorem of Lie–Griffiths”, Invent. Math., 135:2 (1999), 297–328 | DOI | MR | Zbl

[10] R. Lärkäng, “Residue currents associated with weakly holomorphic functions”, Ark. Mat., 50:1 (2012), 135–164 | DOI | MR | Zbl

[11] J. Ruppenthal, “About the $\overline{\partial}$-equation at isolated singularities with regular exceptional set”, Internat. J. Math., 20:4 (2009), 459–489 | DOI | MR | Zbl

[12] A. K. Tsikh, “Weakly holomorphic functions on complete intersections, their holomorphic extension”, Math. USSR-Sb., 61:2 (1988), 421–436 | DOI | MR | Zbl

[13] C. Tung, “On the weak solvability of Schrödinger type equations with boundary conditions”, Math. Rep. (Bucur.), 15(65):4 (2013), 497–510 | MR | Zbl

[14] C. Tung, Generalized Gunning's criterion and Weyl type lemmas for the Schrödinger operator, Preprint, 2017, 28 pp.

[15] O. Forster, Rimanovy poverkhnosti, Mir, M., 1980, 248 pp. ; O. Forster, Riemannsche Flächen, Heidelberger Taschenbucher, 184, Springer-Verlag, Berlin–New York, 1977, x+223 pp. ; O. Forster, Lectures on Riemann surfaces, Transl. from the German, Grad. Texts in Math., 81, Springer-Verlag, New York–Berlin, 1981, viii+254 с. | MR | MR | Zbl | MR | Zbl

[16] C. Tung, “On generalized integral means and Euler type vector fields”, Complex Anal. Oper. Theory, 5:3 (2011), 701–730 | DOI | MR | Zbl

[17] C. Tung, “Semi-harmonicity, integral means and Euler type vector fields”, Adv. Appl. Clifford Algebr., 17:3 (2007), 555–573 ; arXiv: 1507.02675 | DOI | MR | Zbl

[18] W. Stoll, “The multiplicity of a holomorphic map”, Invent. Math., 2 (1966), 15–58 | DOI | MR | Zbl

[19] A. Andreotti, W. Stoll, Analytic and algebraic dependence of meromorphic functions, Lecture Notes in Math., 234, Springer, Berlin–Heidelberg–New York, 1971, iii+390 pp. | MR | Zbl

[20] M. Reed, B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl

[21] L. Kaup, B. Kaup, Holomorphic functions of several variables. An introduction to the fundamental theory, De Gruyter Stud. Math., 3, Walter de Gruyter Co., Berlin, 1983, xv+349 pp. | MR | Zbl

[22] C. Tung, “Integral products, Bochner–Martinelli transforms and applications”, Taiwanese J. Math., 13:5 (2009), 1583–1608 | DOI | MR | Zbl

[23] F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York–London, 1967, xvi+624 pp. | MR | Zbl