On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1239-1264
Voir la notice de l'article provenant de la source Math-Net.Ru
We extend the Cauchy–Riemann (or Wirtinger) operators
and the Laplacian on ${\mathbb C}^m$ to zero-degree currents
on a (possibly singular) Riemann subdomain $D$ of a complex space
(without recourse to resolution of singularities). The former extension
gives rise to an adjoint operator $\overline\partial^*$ for the
$\overline\partial$-operator on extendable test forms on $D$
(the components of $\overline\partial^*$ are the Wirtinger derivations).
By means of the Wirtinger derivations, we generalize Gunning's theorem
on the Cauchy–Riemann criterion (in the weak sense) for
locally integrable functions to zero-degree currents on a complex space.
To prove this result, we first give a generalization of Weyl's lemma
to a Helmholtz operator. In the case of a continuous (resp. Lipschitzian)
zero-degree current, we give a characterization of ‘weak holomorphy’
in terms of a local mean-value property (resp. an Euler operation).
Wirtinger derivations also enable us to give explicit representations
of the Green operator for the modified Laplacian
${\mathcal S}_{p,1,0}:= - \triangle_{p} + \mathrm{Id}$
(acting weakly on the Sobolev space $H^{-1}(D)$) and of Riesz's
isomorphism between the Sobolev spaces $H^1_c(D)^*$ and $H^1_c(D)$.
Keywords:
Wirtinger derivations, ${\overline \partial}_{\mathscr{W}}$-closed currents,
${\overline \partial}_{\mathscr{E}}$-closed currents, Schrödinger operator.
@article{IM2_2018_82_6_a6,
author = {Ch.-Ch. Tung},
title = {On {Wirtinger} derivations, the adjoint of the operator~$\overline\partial$, and applications},
journal = {Izvestiya. Mathematics },
pages = {1239--1264},
publisher = {mathdoc},
volume = {82},
number = {6},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/}
}
TY - JOUR AU - Ch.-Ch. Tung TI - On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications JO - Izvestiya. Mathematics PY - 2018 SP - 1239 EP - 1264 VL - 82 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/ LA - en ID - IM2_2018_82_6_a6 ER -
Ch.-Ch. Tung. On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1239-1264. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/