On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1239-1264

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the Cauchy–Riemann (or Wirtinger) operators and the Laplacian on ${\mathbb C}^m$ to zero-degree currents on a (possibly singular) Riemann subdomain $D$ of a complex space (without recourse to resolution of singularities). The former extension gives rise to an adjoint operator $\overline\partial^*$ for the $\overline\partial$-operator on extendable test forms on $D$ (the components of $\overline\partial^*$ are the Wirtinger derivations). By means of the Wirtinger derivations, we generalize Gunning's theorem on the Cauchy–Riemann criterion (in the weak sense) for locally integrable functions to zero-degree currents on a complex space. To prove this result, we first give a generalization of Weyl's lemma to a Helmholtz operator. In the case of a continuous (resp. Lipschitzian) zero-degree current, we give a characterization of ‘weak holomorphy’ in terms of a local mean-value property (resp. an Euler operation). Wirtinger derivations also enable us to give explicit representations of the Green operator for the modified Laplacian ${\mathcal S}_{p,1,0}:= - \triangle_{p} + \mathrm{Id}$ (acting weakly on the Sobolev space $H^{-1}(D)$) and of Riesz's isomorphism between the Sobolev spaces $H^1_c(D)^*$ and $H^1_c(D)$.
Keywords: Wirtinger derivations, ${\overline \partial}_{\mathscr{W}}$-closed currents, ${\overline \partial}_{\mathscr{E}}$-closed currents, Schrödinger operator.
@article{IM2_2018_82_6_a6,
     author = {Ch.-Ch. Tung},
     title = {On {Wirtinger} derivations, the adjoint of the operator~$\overline\partial$, and applications},
     journal = {Izvestiya. Mathematics },
     pages = {1239--1264},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/}
}
TY  - JOUR
AU  - Ch.-Ch. Tung
TI  - On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1239
EP  - 1264
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/
LA  - en
ID  - IM2_2018_82_6_a6
ER  - 
%0 Journal Article
%A Ch.-Ch. Tung
%T On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications
%J Izvestiya. Mathematics 
%D 2018
%P 1239-1264
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/
%G en
%F IM2_2018_82_6_a6
Ch.-Ch. Tung. On Wirtinger derivations, the adjoint of the operator~$\overline\partial$, and applications. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1239-1264. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a6/