Breakdown of cycles and the possibility of opening spectral gaps
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1148-1195

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectrum of a planar square lattice of multidimensional acoustic waveguides (the Neumann problem for the Laplace operator), constructing and justifying asymptotic formulae for solutions of the spectral problem on a periodicity cell. A detailed study of corrections to expansions of eigenvalues and eigenfunctions enables us to construct a model of improved accuracy which is free from the drawbacks of the classical model on a one-dimensional graph (the skeleton of the lattice) with Kirchhoff's classical conjugation conditions at the vertices. In particular, we demonstrate the breakdown of cycles (localized eigenfunctions occurring in the classical model but almost always absent from the improved one) in the multidimensional problem. We discuss the opening of gaps and pseudogaps in the spectrum of the problem on an infinite multidimensional lattice.
Keywords: Neumann problem for the Laplace operator, lattice of thin waveguides, improved one-dimensional model, boundary layer, spectrum, thresholds, gaps.
Mots-clés : cycles
@article{IM2_2018_82_6_a3,
     author = {S. A. Nazarov},
     title = {Breakdown of cycles and the possibility of opening spectral gaps},
     journal = {Izvestiya. Mathematics },
     pages = {1148--1195},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Breakdown of cycles and the possibility of opening spectral gaps
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1148
EP  - 1195
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a3/
LA  - en
ID  - IM2_2018_82_6_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Breakdown of cycles and the possibility of opening spectral gaps
%J Izvestiya. Mathematics 
%D 2018
%P 1148-1195
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a3/
%G en
%F IM2_2018_82_6_a3
S. A. Nazarov. Breakdown of cycles and the possibility of opening spectral gaps. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1148-1195. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a3/