Breakdown of cycles and the possibility of opening spectral gaps
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1148-1195.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectrum of a planar square lattice of multidimensional acoustic waveguides (the Neumann problem for the Laplace operator), constructing and justifying asymptotic formulae for solutions of the spectral problem on a periodicity cell. A detailed study of corrections to expansions of eigenvalues and eigenfunctions enables us to construct a model of improved accuracy which is free from the drawbacks of the classical model on a one-dimensional graph (the skeleton of the lattice) with Kirchhoff's classical conjugation conditions at the vertices. In particular, we demonstrate the breakdown of cycles (localized eigenfunctions occurring in the classical model but almost always absent from the improved one) in the multidimensional problem. We discuss the opening of gaps and pseudogaps in the spectrum of the problem on an infinite multidimensional lattice.
Keywords: Neumann problem for the Laplace operator, lattice of thin waveguides, improved one-dimensional model, boundary layer, spectrum, thresholds, gaps.
Mots-clés : cycles
@article{IM2_2018_82_6_a3,
     author = {S. A. Nazarov},
     title = {Breakdown of cycles and the possibility of opening spectral gaps},
     journal = {Izvestiya. Mathematics },
     pages = {1148--1195},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Breakdown of cycles and the possibility of opening spectral gaps
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1148
EP  - 1195
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a3/
LA  - en
ID  - IM2_2018_82_6_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Breakdown of cycles and the possibility of opening spectral gaps
%J Izvestiya. Mathematics 
%D 2018
%P 1148-1195
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a3/
%G en
%F IM2_2018_82_6_a3
S. A. Nazarov. Breakdown of cycles and the possibility of opening spectral gaps. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1148-1195. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a3/

[1] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl

[2] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR | Zbl

[3] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl

[4] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl

[5] M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proc. Steklov Inst. Math., 171 (1987), 1–121 | MR | Zbl

[6] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl

[7] P. Kuchment, Hongbiao Zeng, “Asymptotics of spectra of Neumann Laplacians in thin domains”, Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, 199–213 | DOI | MR | Zbl

[8] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl

[9] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl

[10] O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Math., 2039, Springer, Heidelberg, 2012, xvi+431 pp. | DOI | MR | Zbl

[11] S. A. Nazarov, “Opening of a gap in the continuous spectrum of a periodically perturbed waveguide”, Math. Notes, 87:5 (2010), 738–756 | DOI | DOI | MR | Zbl

[12] D. I. Borisov, “On the band spectrum of a Schrödinger operator in a periodic system of domains coupled by small windows”, Russ. J. Math. Phys., 22:2 (2015), 153–160 | DOI | MR | Zbl

[13] D. I. Borisov, “Creation of spectral bands for a periodic domain with small windows”, Russ. J. Math. Phys., 23:1 (2016), 19–34 | DOI | MR | Zbl

[14] S. A. Nazarov, “Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of the Dirichlet ladder”, Comput. Math. Math. Phys., 54:8 (2014), 1261–1279 | DOI | DOI | MR | Zbl

[15] S. A. Nazarov, K. Ruotsalainen, P. Uusitalo, “Asymptotics of the spectrum of the Dirichlet Laplacian on a thin carbon nano-structure”, C. R. Mécanique, 343:5-6 (2015), 360–364 | DOI

[16] P. Kuchment, O. Post, “On the spectra of carbon nano-structures”, Comm. Math. Phys., 275:3 (2007), 805–826 | DOI | MR | Zbl

[17] L. Pauling, “The diamagnetic anisotropy of aromatic molecules”, J. Chem. Phys., 4:10 (1936), 673–677 | DOI

[18] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[19] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl

[20] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, N. J., 1951, xvi+279 pp. | DOI | MR | MR | Zbl | Zbl

[21] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964, x+229 pp. | MR | Zbl | Zbl

[22] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[23] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser, Basel, 2000, xxiv+435 pp., xxiv+323 pp. | MR | MR | MR | MR | Zbl

[24] S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340 | DOI | MR | Zbl

[25] I. V. Kamotskiĭ, S. A. Nazarov, “Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators”, Proceedings of the St. Petersburg Mathematical Society, Vol. VI, Amer. Math. Soc. Transl. Ser. 2, 199, Amer. Math. Soc., Providence, RI, 2000, 127–181 | DOI | MR | Zbl

[26] S. A. Nazarov, “Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems”, Funct. Anal. Appl., 49:1 (2015), 25–39 | DOI | DOI | MR | Zbl

[27] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, R.I., 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[28] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Monogr. Textbooks Pure Appl. Math., Noordhoff International Publishing, Leyden, 1974, xxvi+485 pp. | MR | MR | Zbl | Zbl

[29] V. G. Maz'ya, S. A. Nazarov, B. A. Plamenevskii, “On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone”, Math. USSR-Sb., 50:2 (1985), 415–437 | DOI | MR | Zbl

[30] S. A. Nazarov, “Justification of asymptotic expansions of the eigenvalues of nonselfadjoint singularly perturbed elliptic boundary value problems”, Math. USSR-Sb., 57:2 (1987), 317–349 | DOI | MR | Zbl

[31] M. I. Višik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, R.I., 1962, 239–364 | DOI | MR | MR | Zbl | Zbl

[32] L. Bers, F. John, M. Schechter, Partial differential equations, With special lectures by L. Garding and A. N. Milgram (Boulder, Colorado, 1957), Lectures in Appl. Math., III, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1964, xiii+343 pp. | MR | MR | Zbl | Zbl

[33] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[34] S. A. Nazarov, M. V. Olyushin, “Perturbation of the eigenvalues of the Neumann problem due to the variation of the domain boundary”, St. Petersburg Math. J., 5:2 (1994), 371–387 | MR | Zbl