Approximation of the gradient of a~function on the basis of a~special
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1136-1147

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the class of $\Phi$-triangulations of a finite set $P$ of points in $\mathbb{R}^n$ analogous to the classical Delaunay triangulation. Such triangulations can be constructed using the condition of empty intersection of $P$ with the interior of every convex set in a given family of bounded convex sets the boundary of which contains the vertices of a simplex of the triangulation. In this case the classical Delaunay triangulation corresponds to the family of all balls in $\mathbb{R}^n$. We show how $\Phi$-triangulations can be used to obtain error bounds for an approximation of the derivatives of $C^2$-smooth functions by piecewise linear functions.
Keywords: empty sphere condition, families of convex sets, piecewise linear approximation.
Mots-clés : Delaunay triangulation
@article{IM2_2018_82_6_a2,
     author = {V. A. Klyachin},
     title = {Approximation of the gradient of a~function on the basis of a~special},
     journal = {Izvestiya. Mathematics },
     pages = {1136--1147},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a2/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Approximation of the gradient of a~function on the basis of a~special
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1136
EP  - 1147
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a2/
LA  - en
ID  - IM2_2018_82_6_a2
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Approximation of the gradient of a~function on the basis of a~special
%J Izvestiya. Mathematics 
%D 2018
%P 1136-1147
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a2/
%G en
%F IM2_2018_82_6_a2
V. A. Klyachin. Approximation of the gradient of a~function on the basis of a~special. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1136-1147. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a2/