Approximation of the gradient of a~function on the basis of a~special
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1136-1147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the class of $\Phi$-triangulations of a finite set $P$ of points in $\mathbb{R}^n$ analogous to the classical Delaunay triangulation. Such triangulations can be constructed using the condition of empty intersection of $P$ with the interior of every convex set in a given family of bounded convex sets the boundary of which contains the vertices of a simplex of the triangulation. In this case the classical Delaunay triangulation corresponds to the family of all balls in $\mathbb{R}^n$. We show how $\Phi$-triangulations can be used to obtain error bounds for an approximation of the derivatives of $C^2$-smooth functions by piecewise linear functions.
Keywords: empty sphere condition, families of convex sets, piecewise linear approximation.
Mots-clés : Delaunay triangulation
@article{IM2_2018_82_6_a2,
     author = {V. A. Klyachin},
     title = {Approximation of the gradient of a~function on the basis of a~special},
     journal = {Izvestiya. Mathematics },
     pages = {1136--1147},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a2/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Approximation of the gradient of a~function on the basis of a~special
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1136
EP  - 1147
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a2/
LA  - en
ID  - IM2_2018_82_6_a2
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Approximation of the gradient of a~function on the basis of a~special
%J Izvestiya. Mathematics 
%D 2018
%P 1136-1147
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a2/
%G en
%F IM2_2018_82_6_a2
V. A. Klyachin. Approximation of the gradient of a~function on the basis of a~special. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1136-1147. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a2/

[1] A. V. Skvortsov, N. S. Mirza, Algoritmy postroeniya i analiza triangulyatsii, Izd. Tomsk. un-ta, Tomsk, 2006, 168 pp.

[2] Peng Jiao Sun, Xiao Man Wang, Bo Huang, “The design of weldment model based on improved Delaunay triangulation algorithm”, Applied Mechanics and Materials, 411–414 (2013), 1414–1418 | DOI

[3] V. A. Klyachin, A. A. Shirokii, “Triangulyatsiya Delone mnogomernykh poverkhnostei”, Vestn. SamGU. Estestvennonauch. ser., 2010, no. 4(78), 51–55

[4] P. Jamet, “Estimations d'erreur pour des éléments finis droits presque dégénérés”, Rev. Française Automat. Informat. Recherche Opérationnelle Sér., 10:R-1 (1976), 43–60 | MR | Zbl

[5] Yu. N. Subbotin, “Mnogomernaya kusochno polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, VTsN, Novosibirsk, 1981, 148–153 | MR | Zbl

[6] Yu. N. Subbotin, “Dependence of estimates of a multidimensional piecewise polynomial approximation on the geometric characteristics of the triangulation”, Proc. Steklov Inst. Math., 189 (1990), 135–159 | MR | Zbl

[7] B. R. Gelbaum, J. M. H. Olmsted, Counterexamples in analysis, The Mathesis Series, Holden-Day, Inc., San Francisco, CA–London–Amsterdam, 1964, xxiv+194 pp. | MR | Zbl

[8] V. A. Klyachin, “On a multidimensional analogue of the Schwarz example”, Izv. Math., 76:4 (2012), 681–687 | DOI | DOI | MR | Zbl

[9] V. A. Klyachin, A. A. Shirokii, “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Math. (Iz. VUZ), 56:1 (2012), 27–34 | DOI | MR | Zbl

[10] J. R. Shewchuk, What is a good linear element? Interpolation, conditioning, anisotropy, and quality measures, Department of electrical engineering and computer sciences, Univ. of California, Berkeley, CA, 2002, 66 pp. www.cs.berkeley.edu/~jrs/papers/elemj.pdf

[11] V. A. Klyachin, “Modified Delaunay empty sphere condition in the problem of approximation of the gradient”, Izv. Math., 80:3 (2016), 549–556 | DOI | DOI | MR | Zbl

[12] Yu. V. Vasilevskii, K. N. Lipnikov, “Optimal triangulations: existence, approximations, and double differentiation of $P_1$ finite element functions”, Comput. Math. Math. Phys., 43:6 (2003), 827–835 | MR | Zbl

[13] A. Agouzal, Yu. V. Vassilevski, “Minimization of gradient errors of piecewise linear interpolation on simplicial meshes”, Comput. Methods Appl. Mech. Engrg., 199:33-36 (2010), 2195–2203 | DOI | MR | Zbl

[14] A. Agouzal, K. N. Lipnikov, Yu. V. Vassilevski, “Hessian-free metric-based mesh adaptation via geometry of interpolation error”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 131–145 | MR | Zbl

[15] V. A. Klyachin, “Algoritm triangulyatsii, osnovannyi na uslovii pustogo vypuklogo mnozhestva”, Vestn. Volgogr. gos. un-ta. Ser. 1. Matem. Fiz., 2015, no. 3(28), 27–33 | DOI

[16] V. A. Klyachin, “Ekstremalnye svoistva triangulyatsii, osnovannoi na uslovii pustogo vypuklogo mnozhestva”, Sib. elektron. matem. izv., 12 (2015), 991–997 | DOI | MR | Zbl

[17] I. M. Gel'fand, A. V. Zelevinskii, M. M. Kapranov, “Discriminants of polynomials in several variables and triangulations of Newton polyhedra”, Leningrad Math. J., 2:3 (1991), 499–505 | MR | Zbl

[18] G. K. Kamenev, A. I. Pospelov, “Polyhedral approximation of convex compact bodies by filling methods”, Comput. Math. Math. Phys., 52:5 (2012), 680–690 | DOI | MR | Zbl

[19] E. M. Bronstein, “Approximation of convex sets by polytopes”, J. Math. Sci. (N. Y.), 153:6 (2008), 727–762 | DOI | MR | Zbl

[20] S. N. Avvakumov, “Gladkaya approksimatsiya vypuklykh kompaktov”, Sbornik nauchnykh trudov, Tr. IMM UrO RAN, 4, 1996, 184–200 | MR | Zbl