On the asymptotic behaviour of eigenvalues of a~boundary-value problem
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1108-1135
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a two-dimensional spectral problem of Steklov type
for the Laplace operator in a domain divided into two parts
by a perforated partition with a periodic microstructure.
The Steklov boundary condition is imposed on the lateral
sides of the perforation, the Neumann condition
on the remaining part of the boundary,
and the Dirichlet and Neumann conditions on the
outer boundary of the domain. We construct and justify
two-term asymptotic expressions for the eigenvalues
of this problem. We also construct a two-term
asymptotic formula for the corresponding eigenfunctions.
Keywords:
asymptotic behaviour of eigenvalues, spectral problem,
Steklov problem, homogenization of spectral problems.
@article{IM2_2018_82_6_a1,
author = {R. R. Gadyl'shin and A. L. Piatnitski and G. A. Chechkin},
title = {On the asymptotic behaviour of eigenvalues of a~boundary-value problem},
journal = {Izvestiya. Mathematics },
pages = {1108--1135},
publisher = {mathdoc},
volume = {82},
number = {6},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/}
}
TY - JOUR AU - R. R. Gadyl'shin AU - A. L. Piatnitski AU - G. A. Chechkin TI - On the asymptotic behaviour of eigenvalues of a~boundary-value problem JO - Izvestiya. Mathematics PY - 2018 SP - 1108 EP - 1135 VL - 82 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/ LA - en ID - IM2_2018_82_6_a1 ER -
R. R. Gadyl'shin; A. L. Piatnitski; G. A. Chechkin. On the asymptotic behaviour of eigenvalues of a~boundary-value problem. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1108-1135. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/