Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_6_a1, author = {R. R. Gadyl'shin and A. L. Piatnitski and G. A. Chechkin}, title = {On the asymptotic behaviour of eigenvalues of a~boundary-value problem}, journal = {Izvestiya. Mathematics }, pages = {1108--1135}, publisher = {mathdoc}, volume = {82}, number = {6}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/} }
TY - JOUR AU - R. R. Gadyl'shin AU - A. L. Piatnitski AU - G. A. Chechkin TI - On the asymptotic behaviour of eigenvalues of a~boundary-value problem JO - Izvestiya. Mathematics PY - 2018 SP - 1108 EP - 1135 VL - 82 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/ LA - en ID - IM2_2018_82_6_a1 ER -
R. R. Gadyl'shin; A. L. Piatnitski; G. A. Chechkin. On the asymptotic behaviour of eigenvalues of a~boundary-value problem. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1108-1135. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/
[1] M. Vanninathan, “Homogenization of eigenvalue problems in perforated domains”, Proc. Indian Acad. Sci. Math. Sci., 90:3 (1981), 239–271 | DOI | MR | Zbl
[2] S. Kesavan, “Homogenization of elliptic eigenvalue problems: Part 1”, Appl. Math. Optim., 5:2 (1979), 153–167 | DOI | MR | Zbl
[3] A. G. Chechkina, “Convergence of solutions and eigenelements of Steklov type boundary value problems with boundary conditions of rapidly varying type”, J. Math. Sci. (N. Y.), 162:3 (2009), 443–458 | DOI | MR
[4] A. G. Chechkina, C. D'Apice, U. De Maio, “Rate of convergence of eigenvalues to singularly perturbed Steklov-type problem for elasticity system”, Appl. Anal. (to appear) , Publ. online: 21 Dec. 2017 | DOI
[5] G. A. Chechkin, T. A. Mel'nyk, “Spatial-skin effect for eigenvibrations of a thick cascade junction with ‘heavy’ concentrated masses”, Math. Methods Appl. Sci., 37:1 (2014), 56–74 | DOI | MR | Zbl
[6] G. Griso, A. Migunova, J. Orlik, “Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams”, J. Elasticity, 128:2 (2017), 291–331 | DOI | MR | Zbl
[7] G. A. Chechkin, T. P. Chechkina, “Plane scalar analog of linear degenerate hydrodynamic problem with nonperiodic microstructure of free surface”, J. Math. Sci. (N. Y.), 207:2 (2015), 336–349 | DOI | MR | Zbl
[8] V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sb. Math., 191:7 (2000), 973–1014 | DOI | DOI | MR | Zbl
[9] Yu. D. Golovaty, D. Gómez, M. Lobo, E. Pérez, “On vibrating membranes with very heavy thin inclusions”, Math. Models Methods Appl. Sci., 14:7 (2004), 987–1034 | DOI | MR | Zbl
[10] N. Babych, Yu. Golovaty, “Low and high frequency approximations to eigenvibrations of string with double contrasts”, J. Comput. Appl. Math., 234:6 (2010), 1860–1867 | DOI | MR | Zbl
[11] O. A. Oleĭnik, A. S. Shamaev, G. A. Yosifian, Mathematical problems in elasticity and homogenization, Stud. Math. Appl., 26, North-Holland Publishing Co., Amsterdam, 1992, xiv+398 pp. | MR | MR | Zbl | Zbl
[12] S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340 | DOI | MR | Zbl
[13] R. R. Gadyl'shin, “Asymptotics of the eigenvalues of a boundary value problem with rapidly oscillating boundary conditions”, Differ. Equ., 35:4 (1999), 540–551 | MR | Zbl
[14] D. I. Borisov, “Dvuparametricheskie asimptotiki sobstvennykh chisel laplasiana s chastym cheredovaniem granichnykh uslovii”, Vestnik molodykh uchenykh, Ser. Prikl. matem. i mekh., 2002:1 (2002), 36–52
[15] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics for eigenelements of Laplacian in domain with oscillating boundary: multiple eigenvalues”, Appl. Anal., 86:7 (2007), 873–897 | DOI | MR | Zbl
[16] R. R. Gadyl'shin, D. V. Kozhevnikov, G. A. Chechkin, “Spectral problem in a domain perforated along the boundary. Perturbation of a multiple eigenvalue”, J. Math. Sci. (N. Y.), 196:3 (2014), 276–292 | DOI | MR | Zbl
[17] Y. Amirat, O. Bodard, G. A. Chechkin, A. L. Piatnitski, “Asymptotics of a spectral-sieve problem”, J. Math. Anal. Appl., 435:2 (2016), 1652–1671 | DOI | MR | Zbl
[18] V. A. Marchenko, E. Ya. Khruslov, Homogenization of partial differential equations, Prog. Math. Phys., 46, Birkhäuser Boston, Inc., Boston, MA, 2006, xiv+398 pp. | MR | Zbl
[19] T. Del Vecchio, “The thick Neumann's sieve”, Ann. Mat. Pura Appl. (4), 147 (1987), 363–402 | DOI | MR | Zbl
[20] M. Lobo, O. A. Oleinik, M. E. Pérez, T. A. Shaposhnikova, “On homogenization of solutions of boundary value problems in domains, perforated along manifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3-4 (1997), 611–629 | MR | Zbl
[21] T. A. Mel'nyk, “Scheme of investigation of the spectrum of a family of perturbed operators and its application to spectral problems in thick junction”, Nonlinear Oscil., 6:2 (2003), 232–249 | DOI | MR
[22] E. Sánchez-Palencia, “Boundary value problems in domains containing perforated walls”, Nonlinear partial differential equations and their applications, Collège de France seminar, Vol. III (Paris, 1980/1981), Res. Notes in Math., 70, Pitman, Boston, MA–London, 1982, 309–325 | MR | Zbl
[23] D. Onofrei, B. Vernescu, “Asymptotics of a spectral problem associated with the Neumann sieve”, Anal. Appl. (Singap.), 3:1 (2005), 69–87 | DOI | MR | Zbl
[24] T. A. Mel'nyk, “Asymptotic behavior of eigenvalues and eigenfunctions of the Steklov problem in a thick periodic junction”, Nonlinear Oscil., 4:1 (2001), 91–105 | MR | Zbl
[25] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique”, Ann. Sci. École Norm. Sup. (3), 19 (1902), 455–490 | DOI | MR | Zbl
[26] V. P. Mikhajlov, Partial differential equations, Moscow, Mir Publishers, 1978, 396 pp. | MR | MR | Zbl | Zbl
[27] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 2nd ed., Springer-Verlag, Berlin, 1998, xiv+517 pp. | DOI | MR | MR | Zbl | Zbl
[28] E. M. Landis, G. P. Panasenko, “A variant of a Phragmén–Lindelöf theorem for elliptic equations with coefficients that are periodic functions of all variables except one”, Topics in modern mathematics, Petrovskii seminar No 5, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1985, 133–172 | MR | MR | Zbl | Zbl
[29] I. Pankratova, A. Piatnitski, “Homogenization of convection-diffusion equation in infinite cylinder”, Netw. Heterog. Media, 6:1 (2011), 111–126 | DOI | MR | Zbl
[30] G. A. Chechkin, A. L. Piatnitski, A. S. Shamaev, Homogenization. Methods and applications, Transl. Math. Monogr., 234, Amer. Math. Soc., Providence, RI, 2007, x+234 pp. | MR | Zbl
[31] M. I. Višik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | DOI | MR | MR | Zbl | Zbl
[32] E. Acerbi, V. Chiadò Piat, G. Dal Maso, D. Percivale, “An extension theorem from connected sets, and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496 | DOI | MR | Zbl
[33] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl
[34] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser, Basel, 2000, xxiii+435 pp., xxiii+323 pp. | MR | MR | Zbl
[35] J. M. Lee, G. Uhlmann, “Determining anisotropic real-analytic conductivities by boundary measurements”, Comm. Pure Appl. Math., 42:8 (1989), 1097–1112 | DOI | MR | Zbl