On the asymptotic behaviour of eigenvalues of a~boundary-value problem
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1108-1135

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-dimensional spectral problem of Steklov type for the Laplace operator in a domain divided into two parts by a perforated partition with a periodic microstructure. The Steklov boundary condition is imposed on the lateral sides of the perforation, the Neumann condition on the remaining part of the boundary, and the Dirichlet and Neumann conditions on the outer boundary of the domain. We construct and justify two-term asymptotic expressions for the eigenvalues of this problem. We also construct a two-term asymptotic formula for the corresponding eigenfunctions.
Keywords: asymptotic behaviour of eigenvalues, spectral problem, Steklov problem, homogenization of spectral problems.
@article{IM2_2018_82_6_a1,
     author = {R. R. Gadyl'shin and A. L. Piatnitski and G. A. Chechkin},
     title = {On the asymptotic behaviour of eigenvalues of a~boundary-value problem},
     journal = {Izvestiya. Mathematics },
     pages = {1108--1135},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
AU  - A. L. Piatnitski
AU  - G. A. Chechkin
TI  - On the asymptotic behaviour of eigenvalues of a~boundary-value problem
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1108
EP  - 1135
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/
LA  - en
ID  - IM2_2018_82_6_a1
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%A A. L. Piatnitski
%A G. A. Chechkin
%T On the asymptotic behaviour of eigenvalues of a~boundary-value problem
%J Izvestiya. Mathematics 
%D 2018
%P 1108-1135
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/
%G en
%F IM2_2018_82_6_a1
R. R. Gadyl'shin; A. L. Piatnitski; G. A. Chechkin. On the asymptotic behaviour of eigenvalues of a~boundary-value problem. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1108-1135. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a1/