A new approach to the question of existence of periodic solutions
Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1077-1107.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a new type of sufficient conditions for the existence of periodic solutions of ordinary differential equations and functional differential equations of point type. These conditions are based on the use of asymptotic properties of solutions of differential equations that have not been used in the study of periodic solutions because of considerations restricting such equations to an interval equal to the period.
Keywords: differential equations, periodic solutions.
@article{IM2_2018_82_6_a0,
     author = {L. A. Beklaryan},
     title = {A new approach to the question of existence of periodic solutions},
     journal = {Izvestiya. Mathematics },
     pages = {1077--1107},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a0/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - A new approach to the question of existence of periodic solutions
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1077
EP  - 1107
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a0/
LA  - en
ID  - IM2_2018_82_6_a0
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T A new approach to the question of existence of periodic solutions
%J Izvestiya. Mathematics 
%D 2018
%P 1077-1107
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a0/
%G en
%F IM2_2018_82_6_a0
L. A. Beklaryan. A new approach to the question of existence of periodic solutions. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1077-1107. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a0/

[1] L. A. Beklaryan, Vvedenie v teoriyu funktsionalno-differentsionalnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007, 288 pp.

[2] M. A. Krasnoselskii, Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966, 331 pp. | MR | Zbl

[3] M. A. Krasnosel'skii, P. P. Zabreiko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | MR | MR | Zbl | Zbl

[4] Yu. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, R.I., 1974, vi+386 pp. | MR | MR | Zbl | Zbl

[5] A. G. Baskakov, “Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl

[6] A. I. Perov, “Obobschennyi printsip szhimayuschikh otobrazhenii”, Vestn. Voronezhskogo gos. un-ta. Ser. Fiz. Matem., 2005, no. 1, 196–207 | Zbl

[7] L. A. Beklaryan, F. A. Belousov, “Periodic solutions of functional-differential equations of point type”, Differ. Equ., 51:12 (2015), 1541–1555 | DOI | DOI | MR | Zbl

[8] L. A. Beklaryan, “Quasitravelling waves”, Sb. Math., 201:12 (2010), 1731–1775 | DOI | DOI | MR | Zbl

[9] L. A. Beklaryan, “Kvazibeguschie volny kak estestvennoe rasshirenie klassa beguschikh voln”, Vestn. Tambovskogo un-ta. Ser. Estestvennye i tekhnicheskie nauki, 19:2 (2014), 331–340