Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_6_a0, author = {L. A. Beklaryan}, title = {A new approach to the question of existence of periodic solutions}, journal = {Izvestiya. Mathematics }, pages = {1077--1107}, publisher = {mathdoc}, volume = {82}, number = {6}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a0/} }
L. A. Beklaryan. A new approach to the question of existence of periodic solutions. Izvestiya. Mathematics , Tome 82 (2018) no. 6, pp. 1077-1107. http://geodesic.mathdoc.fr/item/IM2_2018_82_6_a0/
[1] L. A. Beklaryan, Vvedenie v teoriyu funktsionalno-differentsionalnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007, 288 pp.
[2] M. A. Krasnoselskii, Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966, 331 pp. | MR | Zbl
[3] M. A. Krasnosel'skii, P. P. Zabreiko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | MR | MR | Zbl | Zbl
[4] Yu. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, R.I., 1974, vi+386 pp. | MR | MR | Zbl | Zbl
[5] A. G. Baskakov, “Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl
[6] A. I. Perov, “Obobschennyi printsip szhimayuschikh otobrazhenii”, Vestn. Voronezhskogo gos. un-ta. Ser. Fiz. Matem., 2005, no. 1, 196–207 | Zbl
[7] L. A. Beklaryan, F. A. Belousov, “Periodic solutions of functional-differential equations of point type”, Differ. Equ., 51:12 (2015), 1541–1555 | DOI | DOI | MR | Zbl
[8] L. A. Beklaryan, “Quasitravelling waves”, Sb. Math., 201:12 (2010), 1731–1775 | DOI | DOI | MR | Zbl
[9] L. A. Beklaryan, “Kvazibeguschie volny kak estestvennoe rasshirenie klassa beguschikh voln”, Vestn. Tambovskogo un-ta. Ser. Estestvennye i tekhnicheskie nauki, 19:2 (2014), 331–340