Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_5_a4, author = {N. T. Levashova and N. N. Nefedov and A. V. Yagremtsev}, title = {Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem}, journal = {Izvestiya. Mathematics }, pages = {984--1005}, publisher = {mathdoc}, volume = {82}, number = {5}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a4/} }
TY - JOUR AU - N. T. Levashova AU - N. N. Nefedov AU - A. V. Yagremtsev TI - Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem JO - Izvestiya. Mathematics PY - 2018 SP - 984 EP - 1005 VL - 82 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a4/ LA - en ID - IM2_2018_82_5_a4 ER -
%0 Journal Article %A N. T. Levashova %A N. N. Nefedov %A A. V. Yagremtsev %T Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem %J Izvestiya. Mathematics %D 2018 %P 984-1005 %V 82 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a4/ %G en %F IM2_2018_82_5_a4
N. T. Levashova; N. N. Nefedov; A. V. Yagremtsev. Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 984-1005. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a4/
[1] N. T. Levashova, J. V. Muhartova, M. A. Davydova, N. E. Shapkina, A. V. Oltchev, “The application of the theory of contrast structures for describing wind field in spatially heterogeneous vegetation cover”, Moscow Univ. Phys. Bull., 70:3 (2015), 167–174 | MR
[2] N. T. Levashova, Yu. V. Mukhartova, A. V. Olchev, “Trekhmernoe modelirovanie turbulentnogo perenosa v prizemnom sloe atmosfery s primeneniem teorii kontrastnykh struktur”, Kompyuternye issledovaniya i modelirovanie, 8:2 (2016), 355–367
[3] N. E. Grachev, A. V. Dmitriev, D. S. Senin, V. T. Volkov, N. N. Nefedov, “Modelirovanie dinamiki fronta vnutriplastovogo goreniya”, Vych. met. programmirovanie, 11:4 (2010), 306–312
[4] V. T. Volkov, N. N. Nefedov, N. E. Grachev, D. S. Senin, “Otsenka parametrov fronta vnutriplastovogo goreniya pri zakachke vozdukha v neftyanoi plast”, Neftyanoe khozyaistvo, 2010, no. 4, 93–96
[5] A. B. Vasil'eva, V. F. Butuzov, N. N. Nefedov, “Singularly perturbed problems with boundary and internal layers”, Proc. Steklov Inst. Math., 268 (2010), 258–273 | DOI | MR | Zbl
[6] N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev, “Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection”, Comput. Math. Math. Phys., 53:3 (2013), 273–283 | DOI | DOI | MR | Zbl
[7] N. N. Nefedov, “An asymptotic method of differential inequalities for the investigation of periodic contrast structures: existence, asymptotics, and stability”, Differ. Equ., 36:2 (2000), 298–305 | DOI | MR | Zbl
[8] V. T. Volkov, N. N. Nefedov, “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Comput. Math. Math. Phys., 46:4 (2006), 585–593 | DOI | MR | Zbl
[9] Yu. V. Bozhevol'nov, N. N. Nefëdov, “Front motion in the parabolic reaction-diffusion problem”, Comput. Math. Math. Phys., 50:2 (2010), 264–273 | DOI | MR | Zbl
[10] V. Volkov, N. Nefedov, “Asymptotic-numerical investigation of generation and motion of fronts in phase transition models”, Numerical analysis and its applications, Lecture Notes in Comput. Sci., 8236, Springer, Heidelberg, 2013, 524–531 | DOI | MR | Zbl
[11] E. A. Antipov, N. T. Levashova, N. N. Nefedov, “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Comput. Math. Math. Phys., 54:10 (2014), 1536–1549 | DOI | DOI | MR | Zbl
[12] P. Hess, Periodic-parabolic boundary value problems and positivity, Pitman Res. Notes Math. Ser., 247, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1991, viii+139 pp. | MR | Zbl
[13] D. H. Sattinger, “Monotone methods in nonlinear elliptic and parabolic boundary value problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1000 | DOI | MR | Zbl
[14] N. N. Nefedov, “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differ. Equ., 31:7 (1995), 1077–1085 | MR | Zbl
[15] N. Nefedov, “Comparison principle for reaction-diffusion-advection problems with boundary and internal layers”, Numerical analysis and its applications, Lecture Notes in Comput. Sci., 8236, Springer, Heidelberg, 2013, 62–72 | DOI | MR | Zbl
[16] N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR | Zbl
[17] N. N. Nefedov, K. Sakamoto, “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Math. J., 33:3 (2003), 391–432 | MR | Zbl
[18] Xinfu Chen, “Generation and propagation of interfaces for reaction–diffusion equations”, J. Differential Equations, 96:1 (1992), 116–141 | DOI | MR | Zbl
[19] C. Mantegazza, Lecture notes on mean curvature flow, Progr. Math., 290, Birkhäuser/Springer Basel AG, Basel, 2011, xii+166 pp. | DOI | MR | Zbl
[20] N. N. Nefedov, E. I. Nikulin, “Existence and stability of periodic contrast structures in the reaction-advection-diffusion problem in the case of a balanced nonlinearity”, Differ. Equ., 53:4 (2017), 516–529 | DOI | DOI | MR | Zbl
[21] A. I. Volpert, Vit. A. Volpert, Vl. A. Volpert, Traveling wave solutions of parabolic systems, Transl. from the Russian manuscript, Transl. Math. Monogr., 140, 2nd ed., Amer. Math. Soc., Providence, RI, 2000, 448 pp. | MR | Zbl
[22] M. A. Davydova, S. A. Zakharova, N. T. Levashova, “On one model problem for the reaction-diffusion-advection equation”, Comput. Math. Math. Phys., 57:9 (2017), 1528–1539 | DOI | DOI | MR | Zbl
[23] D. V. Lukyanenko, V. T. Volkov, N. N. Nefedov, L. Recke, K. Schneider, “Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes”, Model. i analiz inform. sistem, 23:3 (2016), 334–341 | DOI | MR