Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 984-1005
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the initial-boundary value problem for an equation
of reaction-diffusion-advection type in the case when the
condition of balanced advection is satisfied.
We give an algorithm for constructing an asymptotic representation
of a solution which has the form of a moving front,
obtain the equation of motion for the point of localization
of the front, and prove the existence of that solution.
The proof uses the asymptotic method of differential inequalities.
Keywords:
small parameter, asymptotic methods,
internal transition layer, differential inequalities.
Mots-clés : equation of reaction-diffusion-advection type, motion of a front
Mots-clés : equation of reaction-diffusion-advection type, motion of a front
@article{IM2_2018_82_5_a4,
author = {N. T. Levashova and N. N. Nefedov and A. V. Yagremtsev},
title = {Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem},
journal = {Izvestiya. Mathematics },
pages = {984--1005},
publisher = {mathdoc},
volume = {82},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a4/}
}
TY - JOUR AU - N. T. Levashova AU - N. N. Nefedov AU - A. V. Yagremtsev TI - Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem JO - Izvestiya. Mathematics PY - 2018 SP - 984 EP - 1005 VL - 82 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a4/ LA - en ID - IM2_2018_82_5_a4 ER -
%0 Journal Article %A N. T. Levashova %A N. N. Nefedov %A A. V. Yagremtsev %T Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem %J Izvestiya. Mathematics %D 2018 %P 984-1005 %V 82 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a4/ %G en %F IM2_2018_82_5_a4
N. T. Levashova; N. N. Nefedov; A. V. Yagremtsev. Existence of a~solution in the form of a~moving front of a~reaction-diffusion-advection problem. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 984-1005. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a4/