Extension of functions in non-isotropic Nikolskii--Besov spaces and
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 931-983.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-isotropic Nikolskii and Besov spaces with norms defined using `$L_p$-averaged' moduli of continuity of functions of appropriate orders along the coordinate directions, instead of moduli of continuity of given orders for derivatives along these directions. We construct continuous linear maps from such spaces of functions defined in domains of certain type to the ordinary non-isotropic Nikolskii and Besov spaces on $ \mathbb{R}^d$ in such a way that these maps are function extension operators. Hence both kinds of spaces coincide on such domains. We also find the weak asymptotics of approximation characteristics related to the problem of recovering the derivative from the values of a function at a given number of points, Stechkin's problem for the differentiation operator, and the problem of width asymptotics for non-isotropic Nikolskii and Besov classes in these domains.
Keywords: extension of functions, equivalent norms, derivative recovery, operator approximation, width.
Mots-clés : non-isotropic Nikolskii–Besov spaces
@article{IM2_2018_82_5_a3,
     author = {S. N. Kudryavtsev},
     title = {Extension of functions in non-isotropic {Nikolskii--Besov} spaces and},
     journal = {Izvestiya. Mathematics },
     pages = {931--983},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a3/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - Extension of functions in non-isotropic Nikolskii--Besov spaces and
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 931
EP  - 983
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a3/
LA  - en
ID  - IM2_2018_82_5_a3
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T Extension of functions in non-isotropic Nikolskii--Besov spaces and
%J Izvestiya. Mathematics 
%D 2018
%P 931-983
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a3/
%G en
%F IM2_2018_82_5_a3
S. N. Kudryavtsev. Extension of functions in non-isotropic Nikolskii--Besov spaces and. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 931-983. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a3/

[1] O. V. Besov, V. P. Il'in, “Natural extension of the class of regions in embedding theorems”, Math. USSR-Sb., 4:4 (1968), 445–456 | DOI | MR | Zbl

[2] V. I. Burenkov, B. L. Fain, “On the extension of functions in anisotropic spaces with preservation of class”, Proc. Steklov Inst. Math., 150 (1981), 55–70 | MR | Zbl

[3] P. A. Shvartsman, “Extension theorems with preservation of local approximation properties of functions in the nonisotropic case”, J. Soviet Math., 22:6 (1983), 1862–1866 | DOI | MR | Zbl

[4] B. L. Fain, “Extension of functions in anisotropic Sobolev spaces”, Proc. Steklov Inst. Math., 170 (1987), 285–311 | MR | Zbl

[5] G. A. Mamedov, “Extension of an anisotropic Hölder class”, Soviet Math. (Iz. VUZ), 29:6 (1985), 43–48 | MR | Zbl

[6] S. N. Kudryavtsev, “Approximation of derivatives of finitely smooth functions in non-isotropic classes”, Izv. Math., 68:1 (2004), 77–123 | DOI | DOI | MR | Zbl

[7] S. N. Kudryavtsev, Prodolzhenie funktsii iz neizotropnykh prostranstv Nikolskogo–Besova i priblizhenie ikh proizvodnykh, arXiv: 1703.09734

[8] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | MR | Zbl | Zbl

[9] S. N. Kudryavtsev, “Obobschennye ryady Khaara i ikh primenenie”, Anal. Math., 37:2 (2011), 103–150 | DOI | MR | Zbl

[10] Ch. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., 1, Academic Press, Inc., Boston, MA, 1992, x+264 pp. | MR | Zbl

[11] V. M. Tikhomirov, Nekotorye voprosy teorii priblizheniya, Izd-vo MGU, M., 1976, 304 pp. | MR

[12] S. N. Kudryavtsev, “Diameters of classes of smooth functions”, Izv. Math., 59:4 (1995), 741–764 | DOI | MR | Zbl