Relative Milnor $K$-groups and differential forms of split nilpotent extensions
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 880-913
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a commutative ring and $I\subset R$ a nilpotent ideal such that the quotient $R/I$ splits out of $R$ as a ring. Let $N\geqslant 1$ be an integer such that $I^N=0$. We establish a canonical isomorphism between the relative Milnor $K$-group $K^{M}_{n+1}(R,I)$ and the quotient of the module of relative differential forms $\Omega^n_{R,I}/d\Omega^{n-1}_{R,I}$ assuming that $N!$ is invertible in $R$ and the ring $R$ is weakly $5$-fold stable, that is, any quadruple of elements of $R$ can be shifted by an invertible element to become a quadruple of invertible elements.
Keywords:
Milnor $K$-groups, differential forms.
@article{IM2_2018_82_5_a1,
author = {S. O. Gorchinskiy and D. N. Tyurin},
title = {Relative {Milnor} $K$-groups and differential forms of split nilpotent extensions},
journal = {Izvestiya. Mathematics },
pages = {880--913},
publisher = {mathdoc},
volume = {82},
number = {5},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/}
}
TY - JOUR AU - S. O. Gorchinskiy AU - D. N. Tyurin TI - Relative Milnor $K$-groups and differential forms of split nilpotent extensions JO - Izvestiya. Mathematics PY - 2018 SP - 880 EP - 913 VL - 82 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/ LA - en ID - IM2_2018_82_5_a1 ER -
S. O. Gorchinskiy; D. N. Tyurin. Relative Milnor $K$-groups and differential forms of split nilpotent extensions. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 880-913. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/