Relative Milnor $K$-groups and differential forms of split nilpotent extensions
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 880-913.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring and $I\subset R$ a nilpotent ideal such that the quotient $R/I$ splits out of $R$ as a ring. Let $N\geqslant 1$ be an integer such that $I^N=0$. We establish a canonical isomorphism between the relative Milnor $K$-group $K^{M}_{n+1}(R,I)$ and the quotient of the module of relative differential forms $\Omega^n_{R,I}/d\Omega^{n-1}_{R,I}$ assuming that $N!$ is invertible in $R$ and the ring $R$ is weakly $5$-fold stable, that is, any quadruple of elements of $R$ can be shifted by an invertible element to become a quadruple of invertible elements.
Keywords: Milnor $K$-groups, differential forms.
@article{IM2_2018_82_5_a1,
     author = {S. O. Gorchinskiy and D. N. Tyurin},
     title = {Relative {Milnor} $K$-groups and differential forms of split nilpotent extensions},
     journal = {Izvestiya. Mathematics },
     pages = {880--913},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
AU  - D. N. Tyurin
TI  - Relative Milnor $K$-groups and differential forms of split nilpotent extensions
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 880
EP  - 913
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/
LA  - en
ID  - IM2_2018_82_5_a1
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%A D. N. Tyurin
%T Relative Milnor $K$-groups and differential forms of split nilpotent extensions
%J Izvestiya. Mathematics 
%D 2018
%P 880-913
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/
%G en
%F IM2_2018_82_5_a1
S. O. Gorchinskiy; D. N. Tyurin. Relative Milnor $K$-groups and differential forms of split nilpotent extensions. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 880-913. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/

[1] S. Bloch, “$K_2$ of Artinian $Q$-algebras, with application to algebraic cycles”, Comm. Algebra, 3:5 (1975), 405–428 | DOI | MR | Zbl

[2] M. Morrow, “$K_2$ of localisations of local rings”, J. Algebra, 399 (2014), 190–204 | DOI | MR | Zbl

[3] T. G. Goodwillie, “Relative algebraic $K$-theory and cyclic homology”, Ann. of Math. (2), 124:2 (1986), 347–402 | DOI | MR | Zbl

[4] W. van der Kallen, “Le $K_2$ des nombres duaux”, C. R. Acad. Sci. Paris Sér. A-B, 273 (1971), A1204–A1207 | MR | Zbl

[5] S. Bloch, “On the tangent space to Quillen $K$-theory”, Algebraic $K$-theory (Battelle Memorial Inst., Seattle, Wash., 1972), v. I, Lecture Notes in Math., 341, Higher $K$-theories, Springer, Berlin, 1973, 205–210 | DOI | MR | Zbl

[6] H. Maazen, J. Stienstra, “A presentation for $K_2$ of split radical pairs”, J. Pure Appl. Algebra, 10:3 (1977/1978), 271–294 | DOI | MR | Zbl

[7] W. van der Kallen, “The $K_2$ of rings with many units”, Ann. Sci. École Norm. Sup. (4), 10:4 (1977), 473–515 | DOI | MR | Zbl

[8] S. O. Gorchinskiy, D. V. Osipov, “Tangent space to Milnor $K$-groups of rings”, Proc. Steklov Inst. Math., 290, no. 1, 2015, 26–34 | DOI | DOI | MR | Zbl

[9] B. F. Dribus, A Goodwillie-type theorem for Milnor $K$-theory, arXiv: 1402.2222

[10] S. O. Gorchinskiy, D. V. Osipov, “Explicit formula for the higher-dimensional Contou-Carrère symbol”, Russian Math. Surveys, 70:1 (2015), 171–173 | DOI | DOI | MR | Zbl

[11] S. O. Gorchinskiy, D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory”, Sb. Math., 206:9 (2015), 1191–1259 | DOI | DOI | MR | Zbl

[12] S. O. Gorchinskiy, D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66 | DOI | DOI | MR | Zbl

[13] S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | DOI | MR | Zbl

[14] H. Matsumura, Commutative ring theory, Cambridge Stud. Adv. Math., 8, 2nd ed., Cambridge Univ. Press, Cambridge, 1989, xiv+320 pp. | DOI | MR | Zbl

[15] A. B. Goncharov, “Geometry of configurations, polylogarithms, and motivic cohomology”, Adv. Math., 114:2 (1995), 197–318 | DOI | MR | Zbl

[16] G. N. Tyurina, “Locally semiuniversal flat deformations of isolated singularities of complex spaces”, Math. USSR-Izv., 33:5 (1969), 967–999 | DOI | MR | Zbl

[17] H. Grauert, H. Kerner, “Deformationen von Singularitäten komplexer Räume”, Math. Ann., 153:3 (1964), 236–260 | DOI | MR | Zbl

[18] K. Saito, “Quasihomogene isolierte Singularitäten von Hyperflächen”, Invent. Math., 14:2 (1971), 123–142 | DOI | MR | Zbl

[19] V. P. Palamodov, “Multiplicity of holomorphic mappings”, Funct. Anal. Appl., 1:3 (1967), 218–226 | DOI | MR | Zbl

[20] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., 61, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1968, iii+122 pp. | DOI | MR | MR | Zbl | Zbl

[21] B. Malgrange, “Intégrales asymptotiques et monodromie”, Ann. Sci. École Norm. Sup. (4), 7:3 (1974), 405–430 | DOI | MR | Zbl

[22] D. Mond, “From the index of a differential operator to the Milnor number of a singularity”, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010, 129–141 | DOI | MR | Zbl

[23] Lê Dũng Tráng, “Calculation of Milnor number of isolated singularity of complete intersection”, Funct. Anal. Appl., 8:2 (1974), 127–131 | DOI | MR | Zbl

[24] G.-M. Greuel, “Der Gauß–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214:3 (1975), 235–266 | DOI | MR | Zbl

[25] H.-J. Reiffen, “Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen”, Math. Z., 101:4 (1967), 269–284 | DOI | MR | Zbl

[26] D. Arapura, Su-Jeong Kang, “Kähler–de Rham cohomology and Chern classes”, Comm. Algebra, 39:4 (2011), 1153–1167 | DOI | MR | Zbl

[27] M. Rossi, L. Terracini, “Maple subroutines for computing Milnor and Tyurina numbers of hypersurface singularities with application to Arnol'd adjacencies”, Rend. Semin. Mat. Univ. Politec. Torino, 73:3-4 (2015), 269–316 | MR

[28] Yu. P. Nesterenko, A. A. Suslin, “Homology of the full linear group over a local ring, and Milnor's $K$-theory”, Math. USSR-Izv., 34:1 (1990), 121–145 | DOI | MR | Zbl

[29] M. Kerz, “The Gersten conjecture for Milnor $K$-theory”, Invent. Math., 175:1 (2009), 1–33 | DOI | MR | Zbl