Relative Milnor $K$-groups and differential forms of split nilpotent extensions
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 880-913

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring and $I\subset R$ a nilpotent ideal such that the quotient $R/I$ splits out of $R$ as a ring. Let $N\geqslant 1$ be an integer such that $I^N=0$. We establish a canonical isomorphism between the relative Milnor $K$-group $K^{M}_{n+1}(R,I)$ and the quotient of the module of relative differential forms $\Omega^n_{R,I}/d\Omega^{n-1}_{R,I}$ assuming that $N!$ is invertible in $R$ and the ring $R$ is weakly $5$-fold stable, that is, any quadruple of elements of $R$ can be shifted by an invertible element to become a quadruple of invertible elements.
Keywords: Milnor $K$-groups, differential forms.
@article{IM2_2018_82_5_a1,
     author = {S. O. Gorchinskiy and D. N. Tyurin},
     title = {Relative {Milnor} $K$-groups and differential forms of split nilpotent extensions},
     journal = {Izvestiya. Mathematics },
     pages = {880--913},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
AU  - D. N. Tyurin
TI  - Relative Milnor $K$-groups and differential forms of split nilpotent extensions
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 880
EP  - 913
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/
LA  - en
ID  - IM2_2018_82_5_a1
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%A D. N. Tyurin
%T Relative Milnor $K$-groups and differential forms of split nilpotent extensions
%J Izvestiya. Mathematics 
%D 2018
%P 880-913
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/
%G en
%F IM2_2018_82_5_a1
S. O. Gorchinskiy; D. N. Tyurin. Relative Milnor $K$-groups and differential forms of split nilpotent extensions. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 880-913. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/