Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_5_a1, author = {S. O. Gorchinskiy and D. N. Tyurin}, title = {Relative {Milnor} $K$-groups and differential forms of split nilpotent extensions}, journal = {Izvestiya. Mathematics }, pages = {880--913}, publisher = {mathdoc}, volume = {82}, number = {5}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/} }
TY - JOUR AU - S. O. Gorchinskiy AU - D. N. Tyurin TI - Relative Milnor $K$-groups and differential forms of split nilpotent extensions JO - Izvestiya. Mathematics PY - 2018 SP - 880 EP - 913 VL - 82 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/ LA - en ID - IM2_2018_82_5_a1 ER -
S. O. Gorchinskiy; D. N. Tyurin. Relative Milnor $K$-groups and differential forms of split nilpotent extensions. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 880-913. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a1/
[1] S. Bloch, “$K_2$ of Artinian $Q$-algebras, with application to algebraic cycles”, Comm. Algebra, 3:5 (1975), 405–428 | DOI | MR | Zbl
[2] M. Morrow, “$K_2$ of localisations of local rings”, J. Algebra, 399 (2014), 190–204 | DOI | MR | Zbl
[3] T. G. Goodwillie, “Relative algebraic $K$-theory and cyclic homology”, Ann. of Math. (2), 124:2 (1986), 347–402 | DOI | MR | Zbl
[4] W. van der Kallen, “Le $K_2$ des nombres duaux”, C. R. Acad. Sci. Paris Sér. A-B, 273 (1971), A1204–A1207 | MR | Zbl
[5] S. Bloch, “On the tangent space to Quillen $K$-theory”, Algebraic $K$-theory (Battelle Memorial Inst., Seattle, Wash., 1972), v. I, Lecture Notes in Math., 341, Higher $K$-theories, Springer, Berlin, 1973, 205–210 | DOI | MR | Zbl
[6] H. Maazen, J. Stienstra, “A presentation for $K_2$ of split radical pairs”, J. Pure Appl. Algebra, 10:3 (1977/1978), 271–294 | DOI | MR | Zbl
[7] W. van der Kallen, “The $K_2$ of rings with many units”, Ann. Sci. École Norm. Sup. (4), 10:4 (1977), 473–515 | DOI | MR | Zbl
[8] S. O. Gorchinskiy, D. V. Osipov, “Tangent space to Milnor $K$-groups of rings”, Proc. Steklov Inst. Math., 290, no. 1, 2015, 26–34 | DOI | DOI | MR | Zbl
[9] B. F. Dribus, A Goodwillie-type theorem for Milnor $K$-theory, arXiv: 1402.2222
[10] S. O. Gorchinskiy, D. V. Osipov, “Explicit formula for the higher-dimensional Contou-Carrère symbol”, Russian Math. Surveys, 70:1 (2015), 171–173 | DOI | DOI | MR | Zbl
[11] S. O. Gorchinskiy, D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory”, Sb. Math., 206:9 (2015), 1191–1259 | DOI | DOI | MR | Zbl
[12] S. O. Gorchinskiy, D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66 | DOI | DOI | MR | Zbl
[13] S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | DOI | MR | Zbl
[14] H. Matsumura, Commutative ring theory, Cambridge Stud. Adv. Math., 8, 2nd ed., Cambridge Univ. Press, Cambridge, 1989, xiv+320 pp. | DOI | MR | Zbl
[15] A. B. Goncharov, “Geometry of configurations, polylogarithms, and motivic cohomology”, Adv. Math., 114:2 (1995), 197–318 | DOI | MR | Zbl
[16] G. N. Tyurina, “Locally semiuniversal flat deformations of isolated singularities of complex spaces”, Math. USSR-Izv., 33:5 (1969), 967–999 | DOI | MR | Zbl
[17] H. Grauert, H. Kerner, “Deformationen von Singularitäten komplexer Räume”, Math. Ann., 153:3 (1964), 236–260 | DOI | MR | Zbl
[18] K. Saito, “Quasihomogene isolierte Singularitäten von Hyperflächen”, Invent. Math., 14:2 (1971), 123–142 | DOI | MR | Zbl
[19] V. P. Palamodov, “Multiplicity of holomorphic mappings”, Funct. Anal. Appl., 1:3 (1967), 218–226 | DOI | MR | Zbl
[20] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., 61, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1968, iii+122 pp. | DOI | MR | MR | Zbl | Zbl
[21] B. Malgrange, “Intégrales asymptotiques et monodromie”, Ann. Sci. École Norm. Sup. (4), 7:3 (1974), 405–430 | DOI | MR | Zbl
[22] D. Mond, “From the index of a differential operator to the Milnor number of a singularity”, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010, 129–141 | DOI | MR | Zbl
[23] Lê Dũng Tráng, “Calculation of Milnor number of isolated singularity of complete intersection”, Funct. Anal. Appl., 8:2 (1974), 127–131 | DOI | MR | Zbl
[24] G.-M. Greuel, “Der Gauß–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214:3 (1975), 235–266 | DOI | MR | Zbl
[25] H.-J. Reiffen, “Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen”, Math. Z., 101:4 (1967), 269–284 | DOI | MR | Zbl
[26] D. Arapura, Su-Jeong Kang, “Kähler–de Rham cohomology and Chern classes”, Comm. Algebra, 39:4 (2011), 1153–1167 | DOI | MR | Zbl
[27] M. Rossi, L. Terracini, “Maple subroutines for computing Milnor and Tyurina numbers of hypersurface singularities with application to Arnol'd adjacencies”, Rend. Semin. Mat. Univ. Politec. Torino, 73:3-4 (2015), 269–316 | MR
[28] Yu. P. Nesterenko, A. A. Suslin, “Homology of the full linear group over a local ring, and Milnor's $K$-theory”, Math. USSR-Izv., 34:1 (1990), 121–145 | DOI | MR | Zbl
[29] M. Kerz, “The Gersten conjecture for Milnor $K$-theory”, Invent. Math., 175:1 (2009), 1–33 | DOI | MR | Zbl