Diagonal complexes
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 861-879

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the partially ordered set of all tuples of pairwise non-intersecting diagonals in an $n$-gon is isomorphic to the face lattice of a convex polytope called the associahedron. We replace the $n$-gon (viewed as a disc with $n$ marked points on the boundary) by an arbitrary oriented surface with a set of labelled marked points (‘vertices’). After appropriate definitions we arrive at a cell complex $\mathcal{D}$ (generalizing the associahedron) with the barycentric subdivision $\mathcal{BD}$. When the surface is closed, the complex $\mathcal{D}$ (as well as $\mathcal{BD}$) is homotopy equivalent to the space $RG_{g,n}^{\mathrm{met}}$ of metric ribbon graphs or, equivalently, to the decorated moduli space $\widetilde{\mathcal{M}}_{g,n}$. For bordered surfaces we prove the following. 1) Contraction of an edge does not change the homotopy type of the complex. 2) Contraction of a boundary component to a new marked point yields a forgetful map between two diagonal complexes which is homotopy equivalent to the Kontsevich tautological circle bundle. Thus we obtain a natural simplicial model for the tautological bundle. As an application, we compute the psi-class, that is, the first Chern class in combinatorial terms. This result is obtained by using a local combinatorial formula. 3) In the same way, contraction of several boundary components corresponds to the Whitney sum of tautological bundles.
Keywords: ribbon graphs, curve complex, Chern class.
Mots-clés : moduli space, associahedron
@article{IM2_2018_82_5_a0,
     author = {J. A. Gordon and G. Yu. Panina},
     title = {Diagonal complexes},
     journal = {Izvestiya. Mathematics },
     pages = {861--879},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/}
}
TY  - JOUR
AU  - J. A. Gordon
AU  - G. Yu. Panina
TI  - Diagonal complexes
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 861
EP  - 879
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/
LA  - en
ID  - IM2_2018_82_5_a0
ER  - 
%0 Journal Article
%A J. A. Gordon
%A G. Yu. Panina
%T Diagonal complexes
%J Izvestiya. Mathematics 
%D 2018
%P 861-879
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/
%G en
%F IM2_2018_82_5_a0
J. A. Gordon; G. Yu. Panina. Diagonal complexes. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 861-879. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/