Diagonal complexes
Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 861-879.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the partially ordered set of all tuples of pairwise non-intersecting diagonals in an $n$-gon is isomorphic to the face lattice of a convex polytope called the associahedron. We replace the $n$-gon (viewed as a disc with $n$ marked points on the boundary) by an arbitrary oriented surface with a set of labelled marked points (‘vertices’). After appropriate definitions we arrive at a cell complex $\mathcal{D}$ (generalizing the associahedron) with the barycentric subdivision $\mathcal{BD}$. When the surface is closed, the complex $\mathcal{D}$ (as well as $\mathcal{BD}$) is homotopy equivalent to the space $RG_{g,n}^{\mathrm{met}}$ of metric ribbon graphs or, equivalently, to the decorated moduli space $\widetilde{\mathcal{M}}_{g,n}$. For bordered surfaces we prove the following. 1) Contraction of an edge does not change the homotopy type of the complex. 2) Contraction of a boundary component to a new marked point yields a forgetful map between two diagonal complexes which is homotopy equivalent to the Kontsevich tautological circle bundle. Thus we obtain a natural simplicial model for the tautological bundle. As an application, we compute the psi-class, that is, the first Chern class in combinatorial terms. This result is obtained by using a local combinatorial formula. 3) In the same way, contraction of several boundary components corresponds to the Whitney sum of tautological bundles.
Keywords: ribbon graphs, curve complex, Chern class.
Mots-clés : moduli space, associahedron
@article{IM2_2018_82_5_a0,
     author = {J. A. Gordon and G. Yu. Panina},
     title = {Diagonal complexes},
     journal = {Izvestiya. Mathematics },
     pages = {861--879},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/}
}
TY  - JOUR
AU  - J. A. Gordon
AU  - G. Yu. Panina
TI  - Diagonal complexes
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 861
EP  - 879
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/
LA  - en
ID  - IM2_2018_82_5_a0
ER  - 
%0 Journal Article
%A J. A. Gordon
%A G. Yu. Panina
%T Diagonal complexes
%J Izvestiya. Mathematics 
%D 2018
%P 861-879
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/
%G en
%F IM2_2018_82_5_a0
J. A. Gordon; G. Yu. Panina. Diagonal complexes. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 861-879. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/

[1] J. D. Stasheff, “Homotopy associativity of $H$-spaces. I, II”, Trans. Amer. Math. Soc., 108:2 (1963), 275–292, 293–312 | DOI | DOI | MR | Zbl

[2] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math., 84:1 (1986), 157–176 | DOI | MR | Zbl

[3] E. Akhmedov, Riemann surfaces and a generalization of Stasheff polytopes, unpublished manuscript

[4] M. Mulase, M. Penkava, “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline{\mathbb Q}$”, Asian J. Math., 2:4 (1998), 875–919 | DOI | MR | Zbl

[5] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[6] S. K. Lando, A. K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia Math. Sci., 141, Low-dimensional topology, II, Springer-Verlag, Berlin, 2004, xvi+455 pp. | DOI | MR | Zbl

[7] W. P. Thurston, “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.), 19:2 (1988), 417–431 | DOI | MR | Zbl

[8] W. J. Harvey, “Boundary structure of the modular group”, Riemann surfaces and related topics (Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981, 245–251 | MR | Zbl

[9] R. C. Penner, “The structure and singularities of quotient arc complexes”, J. Topol., 1:3 (2008), 527–550 | DOI | MR | Zbl

[10] N. V. Ivanov, “Complexes of curves and the Teichmüller modular group”, Russian Math. Surveys, 42:3 (1987), 55–107 | DOI | MR | Zbl

[11] R. M. Kaufmann, R. C. Penner, “Closed/open string diagrammatics”, Nuclear Phys. B, 748:3 (2006), 335–379 | DOI | MR | Zbl

[12] R. Forman, “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl

[13] R. Forman, “A user's guide to discrete Morse theory”, Sém. Lothar. Combin., 48 (2002), B48c, 35 pp. | MR | Zbl

[14] M. L. Wachs, “Poset topology: tools and applications”, Geometric combinatorics, Lectures from the Graduate Summer School (Park City, UT, 2004), IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, 497–615 | MR | Zbl

[15] P. Dunin-Barkowski, A. Popolitov, G. Shabat, A. Sleptsov, “On the homology of certain smooth covers of moduli spaces of algebraic curves”, Differential Geom. Appl., 40 (2015), 86–102 | DOI | MR | Zbl

[16] K. Igusa, “Combinatorial Miller–Morita–Mumford classes and Witten cycles”, Algebr. Geom. Topol., 4:1 (2004), 473–520 | DOI | MR | Zbl

[17] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002, xii+544 pp. | MR | Zbl

[18] N. Mnev, G. Sharygin, “On local combinatorial formulas for Chern classes of triangulated circle bundle”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXVII, Zap. nauch. sem. POMI, 448, POMI, SPb., 2016, 201–235 ; J. Math. Sci. (N. Y.), 224:2 (2017), 304–327 | MR | Zbl | DOI