Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_5_a0, author = {J. A. Gordon and G. Yu. Panina}, title = {Diagonal complexes}, journal = {Izvestiya. Mathematics }, pages = {861--879}, publisher = {mathdoc}, volume = {82}, number = {5}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/} }
J. A. Gordon; G. Yu. Panina. Diagonal complexes. Izvestiya. Mathematics , Tome 82 (2018) no. 5, pp. 861-879. http://geodesic.mathdoc.fr/item/IM2_2018_82_5_a0/
[1] J. D. Stasheff, “Homotopy associativity of $H$-spaces. I, II”, Trans. Amer. Math. Soc., 108:2 (1963), 275–292, 293–312 | DOI | DOI | MR | Zbl
[2] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math., 84:1 (1986), 157–176 | DOI | MR | Zbl
[3] E. Akhmedov, Riemann surfaces and a generalization of Stasheff polytopes, unpublished manuscript
[4] M. Mulase, M. Penkava, “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline{\mathbb Q}$”, Asian J. Math., 2:4 (1998), 875–919 | DOI | MR | Zbl
[5] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl
[6] S. K. Lando, A. K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia Math. Sci., 141, Low-dimensional topology, II, Springer-Verlag, Berlin, 2004, xvi+455 pp. | DOI | MR | Zbl
[7] W. P. Thurston, “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.), 19:2 (1988), 417–431 | DOI | MR | Zbl
[8] W. J. Harvey, “Boundary structure of the modular group”, Riemann surfaces and related topics (Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981, 245–251 | MR | Zbl
[9] R. C. Penner, “The structure and singularities of quotient arc complexes”, J. Topol., 1:3 (2008), 527–550 | DOI | MR | Zbl
[10] N. V. Ivanov, “Complexes of curves and the Teichmüller modular group”, Russian Math. Surveys, 42:3 (1987), 55–107 | DOI | MR | Zbl
[11] R. M. Kaufmann, R. C. Penner, “Closed/open string diagrammatics”, Nuclear Phys. B, 748:3 (2006), 335–379 | DOI | MR | Zbl
[12] R. Forman, “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl
[13] R. Forman, “A user's guide to discrete Morse theory”, Sém. Lothar. Combin., 48 (2002), B48c, 35 pp. | MR | Zbl
[14] M. L. Wachs, “Poset topology: tools and applications”, Geometric combinatorics, Lectures from the Graduate Summer School (Park City, UT, 2004), IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, 497–615 | MR | Zbl
[15] P. Dunin-Barkowski, A. Popolitov, G. Shabat, A. Sleptsov, “On the homology of certain smooth covers of moduli spaces of algebraic curves”, Differential Geom. Appl., 40 (2015), 86–102 | DOI | MR | Zbl
[16] K. Igusa, “Combinatorial Miller–Morita–Mumford classes and Witten cycles”, Algebr. Geom. Topol., 4:1 (2004), 473–520 | DOI | MR | Zbl
[17] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002, xii+544 pp. | MR | Zbl
[18] N. Mnev, G. Sharygin, “On local combinatorial formulas for Chern classes of triangulated circle bundle”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXVII, Zap. nauch. sem. POMI, 448, POMI, SPb., 2016, 201–235 ; J. Math. Sci. (N. Y.), 224:2 (2017), 304–327 | MR | Zbl | DOI