Continuous selections for metric projection operators and for their generalizations
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 837-859.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions on sets in asymmetric spaces under which there are continuous $\varepsilon$-selections or continuous selections for the metric projection. In particular, we give an affirmative answer to Brown's question on the existence of continuous selections for lower semicontinuous metric projections in polyhedral spaces.
Keywords: metric projection, continuous $\varepsilon$-selection, asymmetric spaces, polyhedral spaces.
@article{IM2_2018_82_4_a5,
     author = {I. G. Tsar'kov},
     title = {Continuous selections for metric projection operators and for their generalizations},
     journal = {Izvestiya. Mathematics },
     pages = {837--859},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a5/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuous selections for metric projection operators and for their generalizations
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 837
EP  - 859
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a5/
LA  - en
ID  - IM2_2018_82_4_a5
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuous selections for metric projection operators and for their generalizations
%J Izvestiya. Mathematics 
%D 2018
%P 837-859
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a5/
%G en
%F IM2_2018_82_4_a5
I. G. Tsar'kov. Continuous selections for metric projection operators and for their generalizations. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 837-859. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a5/

[1] A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci. (N. Y.), 217:6 (2016), 683–730 | DOI | MR | Zbl

[2] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[3] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[4] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl

[5] K. S. Ryutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | DOI | MR | Zbl

[6] K. S. Ryutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | DOI | MR | Zbl

[7] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Math., 80:2 (2016), 442–461 | DOI | DOI | MR | Zbl

[8] I. G. Tsar'kov, “Continuous $\varepsilon$-selection”, Sb. Math., 207:2 (2016), 267–285 | DOI | DOI | MR | Zbl

[9] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl

[10] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl

[11] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl

[12] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl

[13] I. G. Tsar'kov, “Continuous selection for set-valued mappings”, Izv. Math., 81:3 (2017), 645–669 | DOI | DOI | MR | Zbl

[14] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sb. Math., 197:9 (2006), 1259–1272 | DOI | DOI | MR | Zbl

[15] I. G. Tsar'kov, “Continuous $\varepsilon$-selection and monotone path-connected sets”, Math. Notes, 101:6 (2017), 1040–1049 | DOI | DOI | MR | Zbl

[16] L. Górniewicz, Topological fixed point theory of multivalued mappings, Topol. Fixed Point Theory Appl., 4, 2nd ed., Springer, Dordrecht, 2006, xiv+539 pp. | DOI | MR | Zbl

[17] I. G. Tsarkov, “Nekotorye prilozheniya geometricheskoi teorii priblizheniya”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 63–80

[18] I. G. Tsar'kov, “Continuity of the metric projection, structural and approximate properties of sets”, Math. Notes, 47:2 (1990), 218–227 | DOI | MR | Zbl

[19] K. Sakai, Geometric aspects of general topology, Springer Monogr. Math., Springer, Tokyo, 2013 | DOI | MR | Zbl

[20] V. S. Balaganskii, L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Russian Math. Surveys, 51:6 (1996), 1127–1190 | DOI | DOI | MR | Zbl