Continuous selections for metric projection operators and for their generalizations
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 837-859

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions on sets in asymmetric spaces under which there are continuous $\varepsilon$-selections or continuous selections for the metric projection. In particular, we give an affirmative answer to Brown's question on the existence of continuous selections for lower semicontinuous metric projections in polyhedral spaces.
Keywords: metric projection, continuous $\varepsilon$-selection, asymmetric spaces, polyhedral spaces.
@article{IM2_2018_82_4_a5,
     author = {I. G. Tsar'kov},
     title = {Continuous selections for metric projection operators and for their generalizations},
     journal = {Izvestiya. Mathematics },
     pages = {837--859},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a5/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuous selections for metric projection operators and for their generalizations
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 837
EP  - 859
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a5/
LA  - en
ID  - IM2_2018_82_4_a5
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuous selections for metric projection operators and for their generalizations
%J Izvestiya. Mathematics 
%D 2018
%P 837-859
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a5/
%G en
%F IM2_2018_82_4_a5
I. G. Tsar'kov. Continuous selections for metric projection operators and for their generalizations. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 837-859. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a5/