Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_4_a4, author = {D. V. Osipov}, title = {Arithmetic surfaces and adelic quotient groups}, journal = {Izvestiya. Mathematics }, pages = {817--836}, publisher = {mathdoc}, volume = {82}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a4/} }
D. V. Osipov. Arithmetic surfaces and adelic quotient groups. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 817-836. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a4/
[1] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl
[2] A. A. Beilinson, “Residues and adeles”, Func. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl
[3] A. Huber, “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl
[4] A. N. Parshin, “Higher dimensional local fields and $L$-functions”, Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 199–213 | DOI | MR | Zbl
[5] A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the international congress of mathematicians (Hyderabad, 2010), v. 1, Hindustan Book Agency, New Delhi, 2011, 362–392 | DOI | MR | Zbl
[6] J. T. Tate, Jr., Fourier analysis in number fields and Hecke's zeta functions, Thesis (Ph.D.), Princeton Univ., Princeton, 1950, 60 pp. | MR
[7] Yu. G. Zarkhin, A. N. Parshin, “Problemy konechnosti v diofantovoi geometrii”, Prilozhenie k kn.: S. Leng, Osnovy diofantovoi geometrii, Mir, M., 1986, 369–438 ; Yu. G. Zarkhin, A. N. Parshin, “Finiteness problems in Diophantine geometry”, Amer. Math. Soc. Transl. Ser. 2, 143, Amer. Math. Soc., Providence, RI, 1989, 35–102; arXiv: 0912.4325 | MR | Zbl
[8] S. J. Arakelov, “Theory of intersections on the arithmetic surface”, Proceedings of the international congress of mathematicians (Vancouver, B.C., 1974), v. 1, Canad. Math. Congress, Montreal, Que., 1975, 405–408 | MR | Zbl
[9] A. N. Parshin, “A holomorphic version of the Tate–Iwasawa method for unramified $L$-functions”, Sb. Math., 205:10 (2014), 1473–1491 | DOI | DOI | MR | Zbl
[10] D. V. Osipov, A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. II”, Izv. Math., 75:4 (2011), 749–814 | DOI | DOI | MR | Zbl
[11] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | MR | Zbl
[12] K. Sugahara, L. Weng, “Arithmetic cohomology groups”, Appendix in:: L. Weng, Zeta functions of reductive groups and their zeros, World Sci., Hackensack, NJ, 2018 (to appear) ; arXiv: 1507.06074 | Zbl
[13] K. Sugahara, L. Weng, “$H^1_{\mathrm{ar}}$ for arithmetic surface is finite”, Appendix in:: L. Weng, Zeta functions of reductive groups and their zeros, World Sci., Hackensack, NJ, 2018 (to appear) ; arXiv: 1603.02353 | Zbl
[14] Yongchang Zhu, “Weil representations and theta functionals on surfaces”, Perspectives in representation theory, Contemp. Math., 610, Amer. Math. Soc., Providence, RI, 2014, 353–370 | DOI | MR | Zbl
[15] D. V. Osipov, “On adelic quotient group for algebraic surface”, St. Petersburg Math. J., 30:1
[16] Qing Liu, Algebraic geometry and arithmetic curves, Transl. from the French, Oxf. Grad. Texts Math., 6, Oxford Univ. Press, Oxford, 2002, xvi+576 pp. | MR | Zbl
[17] D. V. Osipov, “Second Chern numbers of vector bundles and higher adeles”, Bull. Korean Math. Soc., 54:5 (2017), 1699–1718 | MR
[18] R. Ya. Budylin, S. O. Gorchinskiy, “Intersections of adelic groups on a surface”, Sb. Math., 204:12 (2013), 1701–1711 | DOI | DOI | MR | Zbl
[19] D. V. Osipov, “Serre–Pontryagin duality on arithmetic surfaces via higher adeles” (to appear)
[20] J. B. Bost, Theta invariants of euclidean lattices and infinite-dimensional hermitian vector bundles over arithmetic curves, arXiv: 1512.08946