Arithmetic surfaces and adelic quotient groups
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 817-836.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explicitly calculate an arithmetic adelic quotient group for a locally free sheaf on an arithmetic surface when the fibre over the infinite point of the base is taken into account. The result is stated in the form of a short exact sequence. We relate the last term of this sequence to the projective limit of groups which are finite direct products of copies of the one-dimensional real torus and are connected with the first cohomology groups of locally free sheaves on the arithmetic surface.
Keywords: arithmetic surface, Parshin–Beilinson adeles, arithmetic adeles.
@article{IM2_2018_82_4_a4,
     author = {D. V. Osipov},
     title = {Arithmetic surfaces and adelic quotient groups},
     journal = {Izvestiya. Mathematics },
     pages = {817--836},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a4/}
}
TY  - JOUR
AU  - D. V. Osipov
TI  - Arithmetic surfaces and adelic quotient groups
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 817
EP  - 836
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a4/
LA  - en
ID  - IM2_2018_82_4_a4
ER  - 
%0 Journal Article
%A D. V. Osipov
%T Arithmetic surfaces and adelic quotient groups
%J Izvestiya. Mathematics 
%D 2018
%P 817-836
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a4/
%G en
%F IM2_2018_82_4_a4
D. V. Osipov. Arithmetic surfaces and adelic quotient groups. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 817-836. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a4/

[1] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl

[2] A. A. Beilinson, “Residues and adeles”, Func. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl

[3] A. Huber, “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl

[4] A. N. Parshin, “Higher dimensional local fields and $L$-functions”, Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 199–213 | DOI | MR | Zbl

[5] A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the international congress of mathematicians (Hyderabad, 2010), v. 1, Hindustan Book Agency, New Delhi, 2011, 362–392 | DOI | MR | Zbl

[6] J. T. Tate, Jr., Fourier analysis in number fields and Hecke's zeta functions, Thesis (Ph.D.), Princeton Univ., Princeton, 1950, 60 pp. | MR

[7] Yu. G. Zarkhin, A. N. Parshin, “Problemy konechnosti v diofantovoi geometrii”, Prilozhenie k kn.: S. Leng, Osnovy diofantovoi geometrii, Mir, M., 1986, 369–438 ; Yu. G. Zarkhin, A. N. Parshin, “Finiteness problems in Diophantine geometry”, Amer. Math. Soc. Transl. Ser. 2, 143, Amer. Math. Soc., Providence, RI, 1989, 35–102; arXiv: 0912.4325 | MR | Zbl

[8] S. J. Arakelov, “Theory of intersections on the arithmetic surface”, Proceedings of the international congress of mathematicians (Vancouver, B.C., 1974), v. 1, Canad. Math. Congress, Montreal, Que., 1975, 405–408 | MR | Zbl

[9] A. N. Parshin, “A holomorphic version of the Tate–Iwasawa method for unramified $L$-functions”, Sb. Math., 205:10 (2014), 1473–1491 | DOI | DOI | MR | Zbl

[10] D. V. Osipov, A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. II”, Izv. Math., 75:4 (2011), 749–814 | DOI | DOI | MR | Zbl

[11] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | MR | Zbl

[12] K. Sugahara, L. Weng, “Arithmetic cohomology groups”, Appendix in:: L. Weng, Zeta functions of reductive groups and their zeros, World Sci., Hackensack, NJ, 2018 (to appear) ; arXiv: 1507.06074 | Zbl

[13] K. Sugahara, L. Weng, “$H^1_{\mathrm{ar}}$ for arithmetic surface is finite”, Appendix in:: L. Weng, Zeta functions of reductive groups and their zeros, World Sci., Hackensack, NJ, 2018 (to appear) ; arXiv: 1603.02353 | Zbl

[14] Yongchang Zhu, “Weil representations and theta functionals on surfaces”, Perspectives in representation theory, Contemp. Math., 610, Amer. Math. Soc., Providence, RI, 2014, 353–370 | DOI | MR | Zbl

[15] D. V. Osipov, “On adelic quotient group for algebraic surface”, St. Petersburg Math. J., 30:1

[16] Qing Liu, Algebraic geometry and arithmetic curves, Transl. from the French, Oxf. Grad. Texts Math., 6, Oxford Univ. Press, Oxford, 2002, xvi+576 pp. | MR | Zbl

[17] D. V. Osipov, “Second Chern numbers of vector bundles and higher adeles”, Bull. Korean Math. Soc., 54:5 (2017), 1699–1718 | MR

[18] R. Ya. Budylin, S. O. Gorchinskiy, “Intersections of adelic groups on a surface”, Sb. Math., 204:12 (2013), 1701–1711 | DOI | DOI | MR | Zbl

[19] D. V. Osipov, “Serre–Pontryagin duality on arithmetic surfaces via higher adeles” (to appear)

[20] J. B. Bost, Theta invariants of euclidean lattices and infinite-dimensional hermitian vector bundles over arithmetic curves, arXiv: 1512.08946