Classification of Picard lattices of K3 surfaces
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 752-816.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the results of our papers [1]–[4] on the classification of degenerations of Kählerian K3 surfaces, we classify the Picard lattices of Kählerian K3 surfaces. By classification we mean classification depending on their possible finite symplectic automorphism groups and their non-singular rational curves when the Picard lattice is negative definite.
Keywords: K3 surface, complex surface, Picard lattice, rational curve, degeneration, integer symmetric bilinear form.
Mots-clés : automorphism group
@article{IM2_2018_82_4_a3,
     author = {V. V. Nikulin},
     title = {Classification of {Picard} lattices of {K3} surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {752--816},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a3/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Classification of Picard lattices of K3 surfaces
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 752
EP  - 816
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a3/
LA  - en
ID  - IM2_2018_82_4_a3
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Classification of Picard lattices of K3 surfaces
%J Izvestiya. Mathematics 
%D 2018
%P 752-816
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a3/
%G en
%F IM2_2018_82_4_a3
V. V. Nikulin. Classification of Picard lattices of K3 surfaces. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 752-816. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a3/

[1] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups”, Izv. Math., 79:4 (2015), 740–794 ; arXiv: 1403.6061 | DOI | DOI | MR | Zbl

[2] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II”, Izv. Math., 80:2 (2016), 359–402 ; arXiv: 1504.00326 | DOI | DOI | MR | Zbl

[3] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III”, Izv. Math., 81:5 (2017), 985–1029 ; arXiv: 1608.04373 | DOI | DOI | MR | Zbl

[4] V. V. Nikulin, Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III, 2016, arXiv: 1608.04373

[5] K. Hashimoto, “Finite symplectic actions on the $K3$ lattice”, Nagoya Math. J., 206 (2012), 99–153 ; arXiv: 1012.2682 | DOI | MR | Zbl

[6] Sh. Kondō, “Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of $K3$ surfaces”, With appendix by Sh. Mukai, Duke Math. J., 92:3 (1998), 593–603 | DOI | MR | Zbl

[7] Sh. Mukai, “Finite groups of automorphisms of K3 surfaces and the Mathieu group”, Invent. Math., 94:1 (1988), 183–221 | DOI | MR | Zbl

[8] V. V. Nikulin, “Finite automorphism groups of Kähler K3 surfaces”, Trans. Moscow Math. Soc., 2 (1980), 71–135 | MR | Zbl

[9] Gang Xiao, “Galois covers between $K3$ surfaces”, Ann. Inst. Fourier (Grenoble), 46:1 (1996), 73–88 | DOI | MR | Zbl

[10] V. V. Nikulin, “On Kummer surfaces”, Math. USSR-Izv., 9:2 (1975), 261–275 | DOI | MR | Zbl

[11] V. V. Nikulin, Classification of Picard lattices of K3 surfaces, 2017, arXiv: 1707.05677

[12] I. R. S̆afarevic̆, B. G. Averbuh, Ju. R. Vaĭnberg, A. B. Z̆iz̆c̆enko, Ju. I. Manin, B. G. Moĭs̆ezon, G. N. Tjurina, A. N. Tjurin, “Algebraic surfaces”, Proc. Steklov Inst. Math., 75 (1965), 1–281 | MR | MR | Zbl | Zbl

[13] I. I. Pjateckiĭ-S̆apiro, I. R. S̆afarevic̆, “A Torelli theorem for algebraic surfaces of type $K3$”, Math. USSR-Izv., 5:3 (1971), 547–588 | DOI | MR | Zbl

[14] D. Burns, Jr., M. Rapoport, “On the Torelli problem for Kählerian $K$-3 surfaces”, Ann. Sci. École Norm. Sup. (4), 8:2 (1975), 235–273 | DOI | MR | Zbl

[15] Vik. S. Kulikov, “Degenerations of $K3$ surfaces and Enriques surfaces”, Math. USSR-Izv., 11:5 (1977), 957–989 | DOI | MR | Zbl

[16] Yum Tong Siu, “A simple proof of the surjectivity of the period map of K3 surfaces”, Manuscripta Math., 35:3 (1981), 311–321 | DOI | MR | Zbl

[17] A. N. Todorov, “Applications of the Kähler–Einstein–Calabi–Yau metric to moduli of K3 surfaces”, Invent. Math., 61:3 (1980), 251–265 | DOI | MR | Zbl

[18] V. V. Nikulin, “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa KZ”, UMN, 31:2(188) (1976), 223–224 | MR | Zbl

[19] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl

[20] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, Springer-Verlag, New York, 1988, xxviii+663 pp. | DOI | MR | MR | MR | Zbl

[21] V. V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices. I”, Izv. Math., 77:5 (2013), 954–997 ; arXiv: 1109.2879 | DOI | DOI | MR | Zbl

[22] V. V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices. II”, Development of moduli theory – Kyoto 2013, Adv. Stud. Pure Math., 69, Math. Soc. Japan, Tokyo, 2016, 421–471 | MR | Zbl

[23] GAP – Groups, Algorithms, Programming – a system for computational discrete algebra, Version 4.6.5, 2013 http://www.gap-system.org