Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_4_a2, author = {A. G. Kuznetsov}, title = {On linear sections of the spinor {tenfold.~I}}, journal = {Izvestiya. Mathematics }, pages = {694--751}, publisher = {mathdoc}, volume = {82}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a2/} }
A. G. Kuznetsov. On linear sections of the spinor tenfold.~I. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 694-751. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a2/
[1] A. G. Kuznetsov, “Hyperplane sections and derived categories”, Izv. Math., 70:3 (2006), 447–547 | DOI | DOI | MR | Zbl
[2] A. Kuznetsov, “Semiorthogonal decompositions in algebraic geometry”, Proceedings of the international congress of mathematicians (Seoul, 2014), v. 2, Kyung Moon Sa, Seoul, 2014, 635–660 | MR | Zbl
[3] F. L. Zak, Tangents and secants of algebraic varieties, Transl. from the Russian manuscript, Transl. Math. Monogr., 127, Amer. Math. Soc., Providence, RI, 1993, viii+164 pp. | MR | Zbl
[4] K. Ranestad, F.-O. Schreyer, “Varieties of sums of powers”, J. Reine Angew. Math., 2000:525 (2000), 147–181 | DOI | MR | Zbl
[5] B. Pasquier, “On some smooth projective two-orbit varieties with Picard number 1”, Math. Ann., 344:4 (2009), 963–987 | DOI | MR | Zbl
[6] L. Manivel, Double spinor Calabi–Yau varieties, 2017, arXiv: 1709.07736
[7] Baohua Fu, Jun-Muk Hwang, “Special birational transformations of type $(2,1)$”, J. Algebraic Geom., 27:1 (2018), 55–89 | DOI | MR | Zbl
[8] S. Gorchinskiy, “Integral Chow motives of threefolds with {$K$}-motives of unit type”, Bull. Korean Math. Soc., 54:5 (2017), 1827–1849 | MR
[9] S. Galkin, L. Katzarkov, A. Mellit, E. Shinder, Minifolds and phantoms, 2013, arXiv: 1305.4549
[10] A. Kuznetsov, “Küchle fivefolds of type $c5$”, Math. Z., 284:3-4 (2016), 1245–1278 | DOI | MR | Zbl
[11] O. Debarre, A. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom., 5:1 (2018), 15–76 | MR
[12] J. M. Landsberg, L. Manivel, “On the projective geometry of rational homogeneous varieties”, Comment. Math. Helv., 78:1 (2003), 65–100 | DOI | MR | Zbl
[13] G. Ottaviani, “Spinor bundles on quadrics”, Trans. Amer. Math. Soc., 307:1 (1988), 301–316 | DOI | MR | Zbl
[14] A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182 | DOI | MR | Zbl
[15] O. Debarre, A. Kuznetsov, “Gushel–Mukai varieties: linear spaces and periods”, Kyoto J. Math. (to appear); 2016, arXiv: 1605.05648
[16] A. Kuznetsov, A. Perry, “Derived categories of Gushel–Mukai varieties”, Compos. Math., 154:7 (2018), 1362–1406 ; (2016), arXiv: 1605.06568 | DOI
[17] L. Ein, N. Shepherd-Barron, “Some special Cremona transformations”, Amer. J. Math., 111:5 (1989), 783–800 | DOI | MR | Zbl
[18] Yu. G. Prokhorov, “On the number of singular points of terminal factorial Fano threefolds”, Math. Notes, 101:6 (2017), 1068–1073 | DOI | DOI | MR | Zbl
[19] A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 157–220 | DOI | MR | Zbl
[20] S. Mukai, “Curves and symmetric spaces. I”, Amer. J. Math., 117:6 (1995), 1627–1644 | DOI | MR | Zbl
[21] A. G. Kuznetsov, “Derived categories of Fano threefolds $V_{12}$”, Math. Notes, 78:4 (2005), 537–550 | DOI | DOI | MR | Zbl
[22] S. Mukai, “Duality of polarized $K3$ surfaces”, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999, 311–326 | DOI | MR | Zbl
[23] M. Marcolli, G. Tabuada, “From exceptional collections to motivic decompositions via noncommutative motives”, J. Reine Angew. Math., 2015:701 (2015), 153–167 | DOI | MR | Zbl
[24] Yu. G. Prokhorov, “On $G$-Fano threefolds”, Izv. Math., 79:4 (2015), 795–808 | DOI | DOI | MR | Zbl
[25] M. Sato, T. Kimura, “A classification of irreducible prehomogeneous vector spaces and their relative invariants”, Nagoya Math. J., 65 (1977), 1–155 | DOI | MR | Zbl
[26] W. Kraśkiewicz, J. Weyman, Geometry of orbit closures for the representations associated to gradings of Lie algebras of types $E_6$, $F_4$ and $G_2$, 2012, arXiv: 1201.1102
[27] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Mod. Birkhäuser Class., Corr. reprint of the 1988 ed., Birkhäuser/Springer Basel AG, Basel, 2011, viii+239 pp. | DOI | MR | MR | Zbl | Zbl