On linear sections of the spinor tenfold.~I
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 694-751.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the geometry of transverse linear sections of the spinor tenfold $X$, the connected component of the orthogonal Grassmannian of 5-dimensional isotropic subspaces in a 10-dimensional vector space endowed with a non-degenerate quadratic form. In particular, we show that if the dimension of a linear section of $X$ is at least 5, then its integral Chow motive is of Lefschetz type. We discuss the classification of smooth linear sections of $X$ of small codimension. In particular, we check that there is a unique isomorphism class of smooth hyperplane sections and exactly two isomorphism classes of smooth sections of codimension 2. Using this, we define a natural quadratic line complex associated with a linear section of $X$. We also discuss the Hilbert schemes of linear spaces and quadrics on $X$ and its linear sections.
Keywords: spinor variety, linear sections, Chow motives, birational transformations, classification of algebraic varieties, Hilbert schemes.
@article{IM2_2018_82_4_a2,
     author = {A. G. Kuznetsov},
     title = {On linear sections of the spinor {tenfold.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {694--751},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a2/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - On linear sections of the spinor tenfold.~I
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 694
EP  - 751
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a2/
LA  - en
ID  - IM2_2018_82_4_a2
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T On linear sections of the spinor tenfold.~I
%J Izvestiya. Mathematics 
%D 2018
%P 694-751
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a2/
%G en
%F IM2_2018_82_4_a2
A. G. Kuznetsov. On linear sections of the spinor tenfold.~I. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 694-751. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a2/

[1] A. G. Kuznetsov, “Hyperplane sections and derived categories”, Izv. Math., 70:3 (2006), 447–547 | DOI | DOI | MR | Zbl

[2] A. Kuznetsov, “Semiorthogonal decompositions in algebraic geometry”, Proceedings of the international congress of mathematicians (Seoul, 2014), v. 2, Kyung Moon Sa, Seoul, 2014, 635–660 | MR | Zbl

[3] F. L. Zak, Tangents and secants of algebraic varieties, Transl. from the Russian manuscript, Transl. Math. Monogr., 127, Amer. Math. Soc., Providence, RI, 1993, viii+164 pp. | MR | Zbl

[4] K. Ranestad, F.-O. Schreyer, “Varieties of sums of powers”, J. Reine Angew. Math., 2000:525 (2000), 147–181 | DOI | MR | Zbl

[5] B. Pasquier, “On some smooth projective two-orbit varieties with Picard number 1”, Math. Ann., 344:4 (2009), 963–987 | DOI | MR | Zbl

[6] L. Manivel, Double spinor Calabi–Yau varieties, 2017, arXiv: 1709.07736

[7] Baohua Fu, Jun-Muk Hwang, “Special birational transformations of type $(2,1)$”, J. Algebraic Geom., 27:1 (2018), 55–89 | DOI | MR | Zbl

[8] S. Gorchinskiy, “Integral Chow motives of threefolds with {$K$}-motives of unit type”, Bull. Korean Math. Soc., 54:5 (2017), 1827–1849 | MR

[9] S. Galkin, L. Katzarkov, A. Mellit, E. Shinder, Minifolds and phantoms, 2013, arXiv: 1305.4549

[10] A. Kuznetsov, “Küchle fivefolds of type $c5$”, Math. Z., 284:3-4 (2016), 1245–1278 | DOI | MR | Zbl

[11] O. Debarre, A. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom., 5:1 (2018), 15–76 | MR

[12] J. M. Landsberg, L. Manivel, “On the projective geometry of rational homogeneous varieties”, Comment. Math. Helv., 78:1 (2003), 65–100 | DOI | MR | Zbl

[13] G. Ottaviani, “Spinor bundles on quadrics”, Trans. Amer. Math. Soc., 307:1 (1988), 301–316 | DOI | MR | Zbl

[14] A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182 | DOI | MR | Zbl

[15] O. Debarre, A. Kuznetsov, “Gushel–Mukai varieties: linear spaces and periods”, Kyoto J. Math. (to appear); 2016, arXiv: 1605.05648

[16] A. Kuznetsov, A. Perry, “Derived categories of Gushel–Mukai varieties”, Compos. Math., 154:7 (2018), 1362–1406 ; (2016), arXiv: 1605.06568 | DOI

[17] L. Ein, N. Shepherd-Barron, “Some special Cremona transformations”, Amer. J. Math., 111:5 (1989), 783–800 | DOI | MR | Zbl

[18] Yu. G. Prokhorov, “On the number of singular points of terminal factorial Fano threefolds”, Math. Notes, 101:6 (2017), 1068–1073 | DOI | DOI | MR | Zbl

[19] A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 157–220 | DOI | MR | Zbl

[20] S. Mukai, “Curves and symmetric spaces. I”, Amer. J. Math., 117:6 (1995), 1627–1644 | DOI | MR | Zbl

[21] A. G. Kuznetsov, “Derived categories of Fano threefolds $V_{12}$”, Math. Notes, 78:4 (2005), 537–550 | DOI | DOI | MR | Zbl

[22] S. Mukai, “Duality of polarized $K3$ surfaces”, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999, 311–326 | DOI | MR | Zbl

[23] M. Marcolli, G. Tabuada, “From exceptional collections to motivic decompositions via noncommutative motives”, J. Reine Angew. Math., 2015:701 (2015), 153–167 | DOI | MR | Zbl

[24] Yu. G. Prokhorov, “On $G$-Fano threefolds”, Izv. Math., 79:4 (2015), 795–808 | DOI | DOI | MR | Zbl

[25] M. Sato, T. Kimura, “A classification of irreducible prehomogeneous vector spaces and their relative invariants”, Nagoya Math. J., 65 (1977), 1–155 | DOI | MR | Zbl

[26] W. Kraśkiewicz, J. Weyman, Geometry of orbit closures for the representations associated to gradings of Lie algebras of types $E_6$, $F_4$ and $G_2$, 2012, arXiv: 1201.1102

[27] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Mod. Birkhäuser Class., Corr. reprint of the 1988 ed., Birkhäuser/Springer Basel AG, Basel, 2011, viii+239 pp. | DOI | MR | MR | Zbl | Zbl