Kloosterman sums with multiplicative coefficients
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 647-661

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain several new bounds for sums of the form $$ S_{q}(x;f)=\mathop{{\sum}'}_{n\le x}f(n)e_{q}(an^*+bn), $$ in which $q$ is a sufficiently large integer, $\sqrt{q}\,(\log{q})\ll x\le q$, $a$ and $b$ are integers with $(a,q)=1$, $e_{q}(v) = e^{2\pi iv/q}$, $f(n)$ is a multiplicative function satisfying certain conditions, $nn^*\equiv 1 \pmod{q}$, and the prime in the sum means that $(n,q)=1$. The results in this paper refine similar bounds obtained earlier by Gong and Jia.
Keywords: Kloosterman sums, multiplicative functions.
Mots-clés : inverse residues
@article{IM2_2018_82_4_a0,
     author = {M. A. Korolev},
     title = {Kloosterman sums with multiplicative coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {647--661},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a0/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Kloosterman sums with multiplicative coefficients
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 647
EP  - 661
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a0/
LA  - en
ID  - IM2_2018_82_4_a0
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Kloosterman sums with multiplicative coefficients
%J Izvestiya. Mathematics 
%D 2018
%P 647-661
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a0/
%G en
%F IM2_2018_82_4_a0
M. A. Korolev. Kloosterman sums with multiplicative coefficients. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 647-661. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a0/