Kloosterman sums with multiplicative coefficients
Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 647-661
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain several new bounds for sums of the form
$$
S_{q}(x;f)=\mathop{{\sum}'}_{n\le x}f(n)e_{q}(an^*+bn),
$$
in which $q$ is a sufficiently large integer,
$\sqrt{q}\,(\log{q})\ll x\le q$, $a$ and $b$ are integers with
$(a,q)=1$, $e_{q}(v) = e^{2\pi iv/q}$, $f(n)$ is a multiplicative function
satisfying certain conditions, $nn^*\equiv 1 \pmod{q}$, and the prime in the sum
means that $(n,q)=1$. The results in this paper refine similar bounds obtained
earlier by Gong and Jia.
Keywords:
Kloosterman sums, multiplicative functions.
Mots-clés : inverse residues
Mots-clés : inverse residues
@article{IM2_2018_82_4_a0,
author = {M. A. Korolev},
title = {Kloosterman sums with multiplicative coefficients},
journal = {Izvestiya. Mathematics },
pages = {647--661},
publisher = {mathdoc},
volume = {82},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a0/}
}
M. A. Korolev. Kloosterman sums with multiplicative coefficients. Izvestiya. Mathematics , Tome 82 (2018) no. 4, pp. 647-661. http://geodesic.mathdoc.fr/item/IM2_2018_82_4_a0/