Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_3_a9, author = {E. I. Yurova Axelsson and A. Yu. Khrennikov}, title = {Subcoordinate representation of $p$-adic functions and generalization of {Hensel's} lemma}, journal = {Izvestiya. Mathematics }, pages = {632--645}, publisher = {mathdoc}, volume = {82}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/} }
TY - JOUR AU - E. I. Yurova Axelsson AU - A. Yu. Khrennikov TI - Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma JO - Izvestiya. Mathematics PY - 2018 SP - 632 EP - 645 VL - 82 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/ LA - en ID - IM2_2018_82_3_a9 ER -
%0 Journal Article %A E. I. Yurova Axelsson %A A. Yu. Khrennikov %T Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma %J Izvestiya. Mathematics %D 2018 %P 632-645 %V 82 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/ %G en %F IM2_2018_82_3_a9
E. I. Yurova Axelsson; A. Yu. Khrennikov. Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 632-645. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/
[1] M. van der Put, Algèbres de fonctions continues $p$-adiques, Ph.D. Dissertation, Univ. Utrecht, 1967
[2] V. Anashin, A. Khrennikov, Applied algebraic dynamics, De Gruyter Exp. Math., 49, Walter de Gruyter Co., Berlin, 2009, xxiv+533 pp. | DOI | MR | Zbl
[3] V. S. Anashin, “Uniformly distributed sequences of $p$-adic integers”, Math. Notes, 55:2 (1994), 109–133 | DOI | MR | Zbl
[4] V. Anashin, “Uniformly distributed sequences of $p$-adic integers”, Discrete Math. Appl., 12:6 (2002), 527–590 | DOI | MR | Zbl
[5] V. Anashin, “Ergodic transformations in the space of $p$-adic integers”, $p$-adic mathematical physics (Belgrade, 2005), AIP Conf. Proc., 826, Amer. Inst. Phys., Melville, NY, 2006, 3–24 | DOI | MR | Zbl
[6] K. Mahler, $p$-adic numbers and their functions, Cambridge Tracts in Math., 76, 2nd ed., Cambridge Univ. Press, Cambridge–New York, 1981, xi+320 pp. | MR | Zbl
[7] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984, viii+306 pp. | MR | Zbl
[8] V. S. Anashin, A. Yu. Khrennikov, E. I. Yurova, “Characterization of ergodicity of $p$-adic dynamical systems by using the van der Put basis”, Dokl. Math., 83:3 (2011), 306–308 | DOI | MR | Zbl
[9] V. S. Anashin, A. Yu. Khrennikov, E. I. Yurova, “Ergodicity of dynamical systems on $2$-adic spheres”, Dokl. Math., 86:3 (2012), 843–845 | DOI | MR | Zbl
[10] A. Khrennikov, E. Yurova, “Criteria of measure-preserving for $p$-adic dynamical systems in terms of the van der Put basis”, J. Number Theory, 133:2 (2013), 484–491 | DOI | MR | Zbl
[11] A. Khrennikov, E. Yurova, “Criteria of ergodicity for $p$-adic dynamical systems in terms of coordinate functions”, Chaos Solitons Fractals, 60 (2014), 11–30 | DOI | MR | Zbl
[12] E. Yurova Axelsson, A. Khrennikov, “Generalization of Hensel's lemma: finding the roots of $p$-adic Lipschitz functions”, J. Number Theory, 158 (2016), 217–233 | DOI | MR | Zbl
[13] S. Katok, $p$-adic analysis compared with real, Stud. Math. Libr., 37, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, Univ. Park, PA, 2007, xiv+152 pp. | DOI | MR | Zbl
[14] N. Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Grad. Texts in Math., 58, Springer-Verlag, New York–Heidelberg, 1977, x+122 pp. | MR | MR | Zbl | Zbl
[15] S. De Smedt, A. Khrennikov, “A $p$-adic behaviour of dynamical systems”, Rev. Mat. Complut., 12:2 (1999), 301–323 | MR | Zbl
[16] F. Vivaldi, Algebraic and arithmetic dynamics http://www.maths.qmul.ac.uk/~fv/database/algdyn.pdf
[17] E. Yurova, “Van der Put basis and $p$-adic dynamics”, $p$-Adic Numbers Ultrametric Anal. Appl., 2:2 (2010), 175–178 | DOI | MR | Zbl
[18] V. Anashin, A. Khrennikov, E. Yurova, “$T$-functions revisited: new criteria for bijectivity/transitivity”, Des. Codes Cryptogr., 71:3 (2014), 383–407 | DOI | MR | Zbl
[19] A. Khrennikov, K.-O. Lindahl, M. Gundlach, “Ergodicity in the $p$-adic framework”, Operator methods in ordinary and partial differential equations (Stockholm, 2000), Oper. Theory Adv. Appl., 132, Birkhäuser, Basel, 2002, 245–251 | DOI | MR | Zbl
[20] Ai-Hua Fan, Ming-Tian Li, Jia-Yan Yao, Dan Zhou, “$p$-adic affine dynamical systems and applications”, C. R. Math. Acad. Sci. Paris, 342:2 (2006), 129–134 | DOI | MR | Zbl
[21] Aihua Fan, Lingmin Liao, “On minimal decomposition of $p$-adic polynomial dynamical systems”, Adv. Math., 228:4 (2011), 2116–2144 | DOI | MR | Zbl
[22] Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang, “Minimality of $p$-adic rational maps with good reduction”, Discrete Contin. Dyn. Syst., 37:6 (2017), 3161–3182 ; arXiv: 1511.04856 | DOI | MR | Zbl
[23] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl
[24] A. Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Math. Appl., 427, Kluwer Acad. Publ., Dordreht, 1997, xviii+371 pp. | DOI | MR | Zbl
[25] A. Khrennikov, “Small denominators in complex $p$-adic dynamics”, Indag. Math. (N.S.), 12:2 (2001), 177–189 | DOI | MR | Zbl
[26] E. Yurova, “On measure-preserving functions over $\mathbb{Z}_3$”, $p$-Adic Numbers Ultrametric Anal. Appl., 4:4 (2012), 326–335 | DOI | MR | Zbl