Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 632-645

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe a new representation of $p$-adic functions, the so-called subcoordinate representation. The main feature of the subcoordinate representation of a $p$-adic function is that the values of the function $f$ are given in the canonical form of the representation of $p$-adic numbers. The function $f$ itself is determined by a tuple of $p$-valued functions from the set $\{0,1,\dots,p-1\}$ into itself and by the order in which these functions are used to determine the values of $f$. We also give formulae that enable one to pass from the subcoordinate representation of a $1$-Lipschitz function to its van der Put series representation. The effective use of the subcoordinate representation of $p$-adic functions is illustrated by a study of the feasibility of generalizing Hensel's lemma.
Keywords: $p$-adic numbers, Lipschitz functions, coordinate representation, van der Put series.
@article{IM2_2018_82_3_a9,
     author = {E. I. Yurova Axelsson and A. Yu. Khrennikov},
     title = {Subcoordinate representation of $p$-adic functions and generalization of {Hensel's} lemma},
     journal = {Izvestiya. Mathematics },
     pages = {632--645},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/}
}
TY  - JOUR
AU  - E. I. Yurova Axelsson
AU  - A. Yu. Khrennikov
TI  - Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 632
EP  - 645
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/
LA  - en
ID  - IM2_2018_82_3_a9
ER  - 
%0 Journal Article
%A E. I. Yurova Axelsson
%A A. Yu. Khrennikov
%T Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma
%J Izvestiya. Mathematics 
%D 2018
%P 632-645
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/
%G en
%F IM2_2018_82_3_a9
E. I. Yurova Axelsson; A. Yu. Khrennikov. Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 632-645. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/