Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 632-645.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe a new representation of $p$-adic functions, the so-called subcoordinate representation. The main feature of the subcoordinate representation of a $p$-adic function is that the values of the function $f$ are given in the canonical form of the representation of $p$-adic numbers. The function $f$ itself is determined by a tuple of $p$-valued functions from the set $\{0,1,\dots,p-1\}$ into itself and by the order in which these functions are used to determine the values of $f$. We also give formulae that enable one to pass from the subcoordinate representation of a $1$-Lipschitz function to its van der Put series representation. The effective use of the subcoordinate representation of $p$-adic functions is illustrated by a study of the feasibility of generalizing Hensel's lemma.
Keywords: $p$-adic numbers, Lipschitz functions, coordinate representation, van der Put series.
@article{IM2_2018_82_3_a9,
     author = {E. I. Yurova Axelsson and A. Yu. Khrennikov},
     title = {Subcoordinate representation of $p$-adic functions and generalization of {Hensel's} lemma},
     journal = {Izvestiya. Mathematics },
     pages = {632--645},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/}
}
TY  - JOUR
AU  - E. I. Yurova Axelsson
AU  - A. Yu. Khrennikov
TI  - Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 632
EP  - 645
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/
LA  - en
ID  - IM2_2018_82_3_a9
ER  - 
%0 Journal Article
%A E. I. Yurova Axelsson
%A A. Yu. Khrennikov
%T Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma
%J Izvestiya. Mathematics 
%D 2018
%P 632-645
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/
%G en
%F IM2_2018_82_3_a9
E. I. Yurova Axelsson; A. Yu. Khrennikov. Subcoordinate representation of $p$-adic functions and generalization of Hensel's lemma. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 632-645. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a9/

[1] M. van der Put, Algèbres de fonctions continues $p$-adiques, Ph.D. Dissertation, Univ. Utrecht, 1967

[2] V. Anashin, A. Khrennikov, Applied algebraic dynamics, De Gruyter Exp. Math., 49, Walter de Gruyter Co., Berlin, 2009, xxiv+533 pp. | DOI | MR | Zbl

[3] V. S. Anashin, “Uniformly distributed sequences of $p$-adic integers”, Math. Notes, 55:2 (1994), 109–133 | DOI | MR | Zbl

[4] V. Anashin, “Uniformly distributed sequences of $p$-adic integers”, Discrete Math. Appl., 12:6 (2002), 527–590 | DOI | MR | Zbl

[5] V. Anashin, “Ergodic transformations in the space of $p$-adic integers”, $p$-adic mathematical physics (Belgrade, 2005), AIP Conf. Proc., 826, Amer. Inst. Phys., Melville, NY, 2006, 3–24 | DOI | MR | Zbl

[6] K. Mahler, $p$-adic numbers and their functions, Cambridge Tracts in Math., 76, 2nd ed., Cambridge Univ. Press, Cambridge–New York, 1981, xi+320 pp. | MR | Zbl

[7] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984, viii+306 pp. | MR | Zbl

[8] V. S. Anashin, A. Yu. Khrennikov, E. I. Yurova, “Characterization of ergodicity of $p$-adic dynamical systems by using the van der Put basis”, Dokl. Math., 83:3 (2011), 306–308 | DOI | MR | Zbl

[9] V. S. Anashin, A. Yu. Khrennikov, E. I. Yurova, “Ergodicity of dynamical systems on $2$-adic spheres”, Dokl. Math., 86:3 (2012), 843–845 | DOI | MR | Zbl

[10] A. Khrennikov, E. Yurova, “Criteria of measure-preserving for $p$-adic dynamical systems in terms of the van der Put basis”, J. Number Theory, 133:2 (2013), 484–491 | DOI | MR | Zbl

[11] A. Khrennikov, E. Yurova, “Criteria of ergodicity for $p$-adic dynamical systems in terms of coordinate functions”, Chaos Solitons Fractals, 60 (2014), 11–30 | DOI | MR | Zbl

[12] E. Yurova Axelsson, A. Khrennikov, “Generalization of Hensel's lemma: finding the roots of $p$-adic Lipschitz functions”, J. Number Theory, 158 (2016), 217–233 | DOI | MR | Zbl

[13] S. Katok, $p$-adic analysis compared with real, Stud. Math. Libr., 37, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, Univ. Park, PA, 2007, xiv+152 pp. | DOI | MR | Zbl

[14] N. Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Grad. Texts in Math., 58, Springer-Verlag, New York–Heidelberg, 1977, x+122 pp. | MR | MR | Zbl | Zbl

[15] S. De Smedt, A. Khrennikov, “A $p$-adic behaviour of dynamical systems”, Rev. Mat. Complut., 12:2 (1999), 301–323 | MR | Zbl

[16] F. Vivaldi, Algebraic and arithmetic dynamics http://www.maths.qmul.ac.uk/~fv/database/algdyn.pdf

[17] E. Yurova, “Van der Put basis and $p$-adic dynamics”, $p$-Adic Numbers Ultrametric Anal. Appl., 2:2 (2010), 175–178 | DOI | MR | Zbl

[18] V. Anashin, A. Khrennikov, E. Yurova, “$T$-functions revisited: new criteria for bijectivity/transitivity”, Des. Codes Cryptogr., 71:3 (2014), 383–407 | DOI | MR | Zbl

[19] A. Khrennikov, K.-O. Lindahl, M. Gundlach, “Ergodicity in the $p$-adic framework”, Operator methods in ordinary and partial differential equations (Stockholm, 2000), Oper. Theory Adv. Appl., 132, Birkhäuser, Basel, 2002, 245–251 | DOI | MR | Zbl

[20] Ai-Hua Fan, Ming-Tian Li, Jia-Yan Yao, Dan Zhou, “$p$-adic affine dynamical systems and applications”, C. R. Math. Acad. Sci. Paris, 342:2 (2006), 129–134 | DOI | MR | Zbl

[21] Aihua Fan, Lingmin Liao, “On minimal decomposition of $p$-adic polynomial dynamical systems”, Adv. Math., 228:4 (2011), 2116–2144 | DOI | MR | Zbl

[22] Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang, “Minimality of $p$-adic rational maps with good reduction”, Discrete Contin. Dyn. Syst., 37:6 (2017), 3161–3182 ; arXiv: 1511.04856 | DOI | MR | Zbl

[23] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[24] A. Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Math. Appl., 427, Kluwer Acad. Publ., Dordreht, 1997, xviii+371 pp. | DOI | MR | Zbl

[25] A. Khrennikov, “Small denominators in complex $p$-adic dynamics”, Indag. Math. (N.S.), 12:2 (2001), 177–189 | DOI | MR | Zbl

[26] E. Yurova, “On measure-preserving functions over $\mathbb{Z}_3$”, $p$-Adic Numbers Ultrametric Anal. Appl., 4:4 (2012), 326–335 | DOI | MR | Zbl