Special Bohr--Sommerfeld Lagrangian submanifolds of algebraic varieties
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 612-631.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we continue our study of special Bohr–Sommerfeld submanifolds in the case when the ambient symplectic manifold possesses a compatible integrable complex structure (and is thus an algebraic variety). In this case we show how to reduce the special Bohr–Sommerfeld geometry to Morse theory on the complements of ample divisors. This gives rise to a construction of Lagrangian shadows of ample divisors in algebraic varieties, which is an example of ‘algebraic v. symplectic’ duality. We suggest a condition for the existence of a Lagrangian shadow and give examples of Lagrangian shadows of ample divisors on the projective plane, complex quadrics and flag manifolds.
Keywords: algebraic variety, Lagrangian submanifold, Bohr–Sommerfeld condition, plurisubharmonic function, gradient flow.
@article{IM2_2018_82_3_a8,
     author = {N. A. Tyurin},
     title = {Special {Bohr--Sommerfeld} {Lagrangian} submanifolds of algebraic varieties},
     journal = {Izvestiya. Mathematics },
     pages = {612--631},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a8/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Special Bohr--Sommerfeld Lagrangian submanifolds of algebraic varieties
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 612
EP  - 631
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a8/
LA  - en
ID  - IM2_2018_82_3_a8
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Special Bohr--Sommerfeld Lagrangian submanifolds of algebraic varieties
%J Izvestiya. Mathematics 
%D 2018
%P 612-631
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a8/
%G en
%F IM2_2018_82_3_a8
N. A. Tyurin. Special Bohr--Sommerfeld Lagrangian submanifolds of algebraic varieties. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 612-631. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a8/

[1] N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds”, Izv. Math., 80:6 (2016), 1257–1274 | DOI | DOI | MR | Zbl

[2] A. L. Gorodentsev, A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Math., 65:3 (2001), 437–467 | DOI | DOI | MR | Zbl

[3] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl

[4] Yu. Nohara, K. Ueda, “Floer cohomologies of non-torus fibers of the Gelfand–Cetlin system”, J. Symplectic Geom., 14:4 (2016), 1251–1293 ; arXiv: 1409.4049 | DOI | MR | Zbl

[5] Ya. Eliashberg, “Topological characterization of Stein manifolds of dimension $>2$”, Internat. J. Math., 1:1 (1990), 29–46 | DOI | MR | Zbl

[6] A. Zorich, “Flat surfaces”, Frontiers in number theory, physics and geometry, v. 1, Springer, Berlin, 2006, 437–583 | MR | Zbl

[7] A. Andreotti, Th. Frankel, “The Lefschetz theorem on hyperplane sections”, Ann. of Math. (2), 69:3 (1959), 713–717 | DOI | MR | Zbl

[8] N. A. Tyurin, “Lagrangian tori in the projective plane”, Theoret. and Math. Phys., 158:1 (2009), 1–16 | DOI | DOI | MR | Zbl