Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_3_a8, author = {N. A. Tyurin}, title = {Special {Bohr--Sommerfeld} {Lagrangian} submanifolds of algebraic varieties}, journal = {Izvestiya. Mathematics }, pages = {612--631}, publisher = {mathdoc}, volume = {82}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a8/} }
N. A. Tyurin. Special Bohr--Sommerfeld Lagrangian submanifolds of algebraic varieties. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 612-631. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a8/
[1] N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds”, Izv. Math., 80:6 (2016), 1257–1274 | DOI | DOI | MR | Zbl
[2] A. L. Gorodentsev, A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Math., 65:3 (2001), 437–467 | DOI | DOI | MR | Zbl
[3] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl
[4] Yu. Nohara, K. Ueda, “Floer cohomologies of non-torus fibers of the Gelfand–Cetlin system”, J. Symplectic Geom., 14:4 (2016), 1251–1293 ; arXiv: 1409.4049 | DOI | MR | Zbl
[5] Ya. Eliashberg, “Topological characterization of Stein manifolds of dimension $>2$”, Internat. J. Math., 1:1 (1990), 29–46 | DOI | MR | Zbl
[6] A. Zorich, “Flat surfaces”, Frontiers in number theory, physics and geometry, v. 1, Springer, Berlin, 2006, 437–583 | MR | Zbl
[7] A. Andreotti, Th. Frankel, “The Lefschetz theorem on hyperplane sections”, Ann. of Math. (2), 69:3 (1959), 713–717 | DOI | MR | Zbl
[8] N. A. Tyurin, “Lagrangian tori in the projective plane”, Theoret. and Math. Phys., 158:1 (2009), 1–16 | DOI | DOI | MR | Zbl