Topology of singularities of a~stable real caustic germ of type $E_6$
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 596-611
Voir la notice de l'article provenant de la source Math-Net.Ru
We study manifolds of singular points of a fixed type for a stable real
caustic germ of type $E_6$. We prove the contractibility of every connected
component of the manifold of singular points that are not points
of transversal intersection of smooth branches of the caustic and calculate
the number of these components.
Keywords:
Lagrangian maps, caustics, simple singularities, multisingularities,
Euler characteristic, adjacency index.
@article{IM2_2018_82_3_a7,
author = {V. D. Sedykh},
title = {Topology of singularities of a~stable real caustic germ of type $E_6$},
journal = {Izvestiya. Mathematics },
pages = {596--611},
publisher = {mathdoc},
volume = {82},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a7/}
}
V. D. Sedykh. Topology of singularities of a~stable real caustic germ of type $E_6$. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 596-611. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a7/