Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_3_a7, author = {V. D. Sedykh}, title = {Topology of singularities of a~stable real caustic germ of type $E_6$}, journal = {Izvestiya. Mathematics }, pages = {596--611}, publisher = {mathdoc}, volume = {82}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a7/} }
V. D. Sedykh. Topology of singularities of a~stable real caustic germ of type $E_6$. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 596-611. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a7/
[1] V. I. Arnol'd, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Academic Publishers Group, Dordrecht, 1990, xiv+259 pp. | DOI | MR | MR | Zbl | Zbl
[2] E. Looijenga, “The discriminant of a real simple singularity”, Compositio Math., 37:1 (1978), 51–62 | MR | Zbl
[3] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin–Heidelberg; PHASIS, 2004, xvi+639 pp. | MR | MR | Zbl | Zbl
[4] V. A. Vasilev, Lagranzhevy i lezhandrovy kharakteristicheskie klassy, M., MTsNMO, 2000, 312 pp.
[5] V. D. Sedykh, “On the topology of stable Lagrangian maps with singularities of types $A$ and $D$”, Izv. Math., 79:3 (2015), 581–622 | DOI | DOI | MR | Zbl
[6] J. Callahan, “Bifurcation geometry of $E_6$”, Math. Modelling, 1:4 (1980), 283–309 | DOI | MR | Zbl
[7] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl